期刊文献+

基于RP的骨组织工程支架构造及生物学特性分析 被引量:15

Fabrication of Bone Tissue Engineering Scaffolds Based on RP and Analysis of Biological Properties
下载PDF
导出
摘要 应用三维CAD软件设计支架和相应的模具结构,通过光固化快速成形技术制造出树脂模具,并在模具中填充磷酸钙(CPC)生物材料,然后通过热分解方法去掉树脂模具,得到具有可控微管道结构的骨组织工程支架。该方法克服了传统构造方法中支架内部微管道结构不可控的缺点,为制造出更有利于细胞/组织长入和成活的支架三维空间结构提供了一个更理想的方案。INSTRONMicrotester试验设备上测得支架的最大抗压强度为7.12MPa;测得其表面粗糙度Ra=2.16μm。扫描电镜观察支架表面微结构特征,能谱分析测出支架中所含钙元素和磷元素的摩尔比是1.59∶1。结果表明所构造的支架具有良好的生物学特性。 Negative molds based on the scaffold designs were fabricated using stereolithography RP technique. Calcium phosphate cement (CPC) slurry was cast into the resin molds. After pyrolysis, the bone tissue engineering scaffolds with controlled internal pore architectures were obtained. This method can overcome the defects that internal microchannel structure of scaffolds fabricated by traditional methods are uncontrollable, so it provides an ideal strategy to fabricate a suitable 3D structure of scaffolds beneficial to cell/tissue in growth and survival. The scaffolds were tested on an Instron Microtester and the maximum compressive strength measured is 7.12MPa. The surface roughness Ra value measured is 2.16. Furthermore, the surface microstructure characteristics of the scaffolds were also observed under scanning electron microscope (SEM). The mol ratio of Ca and P measured by energy spectrum analysis is 1.59:1. The results proves that scaffolds have favorable biological properties.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2005年第12期1117-1120,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50235020)
关键词 快速成形 支架 间接制造 生物学特性 rapid prototyping scaffold indirect fabrication biological property
  • 相关文献

参考文献8

  • 1Langer R, Vacanti J P. Tissue Engineering. Science,1993, 260: 920~926.
  • 2Crane G M, Ishaug S L, Mikos A G. Bone Tissue Engineering. Nature Medicine, 1995, 1(12): 1322~1324.
  • 3Leong K F, Cheah C M, Chua C K. Solid Freeform Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs. Biomaterials, 2003, 24: 2363~2378.
  • 4费小琛,熊卓,颜永年,林峰.生物材料快速成形开放平台[J].清华大学学报(自然科学版),2004,44(5):609-612. 被引量:2
  • 5Malcolm N C, John P F, Dean D, et al. Use of Stereolithography to Manufacture Critical-sized 3D Biodegradable Scaffolds for Bone Ingrowth. J.Biomed Mater.Res.,Part B: Appl.Biomater., 2002, 64B: 65~69.
  • 6Taboas J M,Maddox R D, Krebsbach P H, et al. Indirect Solid Free Form Fabrication of Local and Global Porous,Biomimetic and Composite 3D Polymer-ceramic Scaffolds. Biomaterials, 2003, 24: 181~194.
  • 7Brett P M, Harle J, Salih V, et al. Roughness Response Genes in Osteoblasts. Bone, 2004, 35: 124~133.
  • 8Despina D D, Nikoleta D K, Petros G K, et al. Effect of Surface Roughness of Hydroxyapatite on Human Bone Marrow Cell Adhesion,Proliferation, Differentiation and Detachment Strength. Biomaterials, 2001, 22: 87~96.

二级参考文献5

  • 1颜永年,张伟,卢清萍,王刚,刁庆军,时晓明.基于离散/堆积成型概念的RPM原理和发展[J].中国机械工程,1994,5(4):64-66. 被引量:108
  • 2XIONG Zhuo,YAN Yongnian,WANG Shengguo,et al.Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition [J].Scripta Materialia,2002,46(11):771-776.
  • 3XIONG Zhuo,YAN Yongnian,ZHANG Renji,et al.Fabrication of porous poly(L-lactic acid)scaffolds for bone tissue engineering via precise extrusion [J].Scripta Materialia,2001,45(7):773-779.
  • 4YAN Yongnian,XIONG Zhuo,HU Yunyu,et al.Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition [J].Materials Letters,2003,57(18):2623-2628.
  • 5熊卓.[D].北京:清华大学,2002.

共引文献1

同被引文献250

引证文献15

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部