期刊文献+

核函数方法在丙烯腈收率软测量建模中的应用 被引量:1

Application of Kernel-Based Methods to Soft Sensor Modeling of Selectivity to Acrylonitrile
下载PDF
导出
摘要 介绍了核函数方法的基本原理及两种核函数统计建模方法;提出了用核函数PLS与核函数PCR建立工业丙烯腈生产过程丙烯腈收率软测量模型,以便更有效地处理过程非线性、多输入和数据共线性等复杂特性。对比研究发现,基于核函数方法的软测量模型要优于线性统计模型,而核函数PLS模型性能优于核函数PCR。 Principles of kernel-based methods and two kernel-based statistical modeling techniques are introduced. Soft sensor modeling of selectivity to acrylonitrile using kernel PLS and kernel PCR is proposed to cope with the nonlinearity and multi high dimension of input and collinearity problem of process. It is found that the performance of kernel-based methods is superior to linear statistical model and that of kernel PLS is also superior to kernel PCR.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第3期367-370,共4页 Journal of East China University of Science and Technology
关键词 核函数方法 软测量 核函数PLS(KPLS) 核函数PCR(KPCR) kernel-based methods soft sensing kernel PLS kernel PCR
  • 相关文献

参考文献5

  • 1Müller K R, Mika S, Rtsch G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on neural networks,2001,12(2):181-202.
  • 2Suykens J K A, Gestel T V, Brabanter J D, et al. Least squares support vector machines[M]. Singapore: World Scientific Publishing Co Pte Ltd,2002. 36-39.
  • 3Frank B E, Friedman J H. A statistical view of some chemometrics regression tools[J]. Technometrics,1993,35(2):109-135.
  • 4Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks[J]. Computers Chem Engng,1992,16(4):379-391.
  • 5Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space[J]. Journal of Machine learning research,2001,(2):97-123.

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部