Kepler Problem in Hamiltonian Formulation Discussed from Topological Viewpoint
参考文献4
-
1Xu G O and Xu M J 2005 Chin. Phys. Lett. 22 1303.
-
2Arnold V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer) chap 2.8.
-
3Goldstein H 1980 Classical Mechanics (Reading, MA:Addison-Wesley) chaps 9.4 and 9.5.
-
4Wybourne B G 1974 Classical Groups for Physicists (New York: Wiley) chap 16.
-
1徐躬耦,徐鸣洁.Kepler Problem in Lagrangian Formulation Discussed from Topological Viewpoint[J].Chinese Physics Letters,2005,22(6):1303-1304.
-
2于辉,周晓琳,李欣.非Lipschitz条件下带Poisson测度随机微分方程Euler方法的依概率收敛性[J].高师理科学刊,2015,35(11):12-17.
-
3吴宁,阮图南.Hamiltonian formulation of generalized quantum dynamics——Quantum mechanical problem[J].Science China Mathematics,1997,40(4):417-421.
-
4Doctoral Candidate: Zhang Baoshan Advisor: Prof.Dai Shiqiang.Variational Principles and Hamiltonian Formulation for Nonlinear Water Waves[J].Advances in Manufacturing,1998(3):86-88.
-
5胡铮浩.有心力场基本问题——物理继续教育研究(十)[J].苏州教育学院学报,2000,17(1):84-89. 被引量:3
-
6尹社会,皮小力.Laplace-Runge-Lenz矢量的应用探讨[J].科技资讯,2008,6(2):40-40.
-
7李文博,赵定柏.开普勒问题的一种简单处理[J].大学物理,2000,19(1):45-45. 被引量:4
-
8白学义.开普勒问题的另几种推导[J].河南广播电视大学学报,1996,11(1).
-
9李宓善,李文博,李亚玲,李政勇,袁广军,张弛,李烨,温晓阳.开普勒问题的矢量解法[J].大学物理,2005,24(7):19-21. 被引量:2
-
10王鼎勋.扩充的Longuet-Lenz's矢量[J].力学学报,1991,23(3):361-365. 被引量:1