摘要
A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid and two-phase flow regions are considered in the model. In metastable two-phase region, superheated liquid is introduced into the metastable mixture viscosity and two methods are presented to evaluate it. The model is validated by comparing the predicted pressure and temperature profile and mass flow rate with several investigators′ experimental data of R22 and one of its alternatives R290 reported in literature. All of the predicted mass flow rates are within ±800 of measured values. Comparisons are also made between the present model and other investigators′ models or sizing correlation. The model can be used for design or simulation calculation of adiabatic capillary tubes.
A homogeneous theoretical model is developed to predict the performance of R22 and R290 in adiabatic capillary tubes. The model is based on conservation equations of mass, momentum and energy. Metastable both liquid and two-phase flow regions are considered in the model. In metastable two-phase region, superheated liquid is introduced into the metastable mixture viscosity and two methods are presented to evaluate it. The model is validated by comparing the predicted pressure and temperature profile and mass flow rate with several investigators′ experimental data of R22 and one of its alternatives R290 reported in literature. All of the predicted mass flow rates are within ±80_0 of measured values. Comparisons are also made between the present model and other investigators′ models or sizing correlation. The model can be used for design or simulation calculation of adiabatic capillary tubes.
基金
Supportedby"985Project"FundofTianjinUniversity(No.TD2001011).