期刊文献+

一类不定性多人两层多目标协调决策模型的初探(英文)

A Class of Uncertain Multiobjective Bilevel Harmonization Decision Model
下载PDF
导出
摘要 考虑到组织决策中分权的普遍存在和高低管理层间依靠信息沟通所发生的控制和协调行为以及组织环境和内部条件的真实特征-不定性,本文将一类特殊的多人两层多目标协调决策模型置于组织不定性环境中予以研究,提出了不定性多人两层多目标协调决策模型.并通过模型的不断转化和K-T条件的应用,最终转化为确定的一般目标规划模型.同时,考虑到上层决策单元对下层决策行为的信息反馈进行处理时的及时性和交互性要求,一个具有快速反应能力的双层人机交互决策模式在问题求解中被设计出来以适应组织对适时目标管理的信息处理需要. Decentralization exist commonly in the most organizations. The upper-level decision unit can control and harmonize the behaviors of the lower-level decision units by means of the intercommunion of information. Such organization decision problem has been expressed mathematically by multiobjective bilevel programming. But, as all known, the real environment of organization is uncertain, so, it is signality to study uncertain multiobjective bilevel harmonization decision model. When the complex uncertain multiobjective bilevel model is presented, one form with preemptive structure, of this model, become the researched object from the point of practice view, and then, it is transformed to a certain bilevel model by the expected value operators of various uncertain variables and the fuzzy membership functions used to measure the different types of the controlled goals. Here, a one-level model may be obtained finally by the application of the condition K-T. Considering the necessity of adjusting decision behavior in time according to the solution, a decision pattern of man-machine interaction is also designed to support organization's management by objectives.
作者 王緌 徐玖平
出处 《运筹学学报》 CSCD 北大核心 2005年第2期49-56,共8页 Operations Research Transactions
基金 The paper is supported by the National Nature Science Foundation, People's Republic of China, under Grant NSF 70171021.
关键词 决策模型 不定性 多目标 目标规划模型 快速反应能力 内部条件 信息沟通 组织决策 信息反馈 决策行为 决策单元 信息处理 目标管理 问题求解 决策模式 人机交互 交互性 及时性 行处理 环境 转化 Operations research, uncertainty, organization, bilevel programming, management by objectives, goal programming, man-machine interaction
  • 相关文献

参考文献16

  • 1Chen, X.H. Optimality and duality for the multiobjective fractional programming with the generalized (F, ρ) convexity. Journal of Mathematical Analysis amd Applicctions, 2002, 273:190~205.
  • 2H.Stackelberg. The theory of market economy. New York: Oxford University Press, 1952.
  • 3J.Bracken, J.McGill. Mathematical programs with optimization problems in constraints. Operations Research, 1973, 21: 31~44.
  • 4W.Candler, R.Norton. Multilevel programming. Technical Report 20, World Bank Development Research Center, Washington D.C.,1977.
  • 5Weijun Zhong, Nanrong Xu. The modern decision theory and methods. Nanjing, Dongnan University Press, 2001.
  • 6Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, 1:3~28.
  • 7Kaufmann, A. Introduction to the Theory of Fuzzy Subsets. New York: Academic Press, 1975,I.
  • 8Nahmias, S. Fuzzy variables. Fuzzy Sets and Systems, 1978, 1: 97~110.
  • 9Dubois, D., Prade, H. Possibility Theory: An Approach to Computerized Processing of Uncertainty. New York: Plenum, 1988.
  • 10Dubois, D., Prade, H., Fuzzy numbers: An overview, in Analysis of Fuzzy Information. Boca Raton: CRC Press, Bezdek, J.C. (Ed.), 1988, 2: 3~39.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部