期刊文献+

双层线性规划的一个全局优化方法(英文) 被引量:13

A Globally Convergent Algorithm for Solving the Bilevel Linear Programming Problem
下载PDF
导出
摘要 用线性规划对偶理论分析了双层线性规划的最优解与下层问题的对偶问题可行域上极点之间的关系,通过求得下层问题的对偶问题可行域上的极点,将双层线性规划转化为有限个线性规划问题,从而用线性规划方法求得问题的全局最优解.由于下层对偶问题可行域上只有有限个极点,所以方法具有全局收敛性. In this paper, the relationship between the optimal solution of the bilevel linear programming problem and the extreme points of the feasible region of the follower's dual problem is discussed using the duality theory of linear program. This relationship leads to the decomposition of the composite problem into a series of linear programming problems leading to an efficient algorithm. The proposed algorithm can terminate at a global optimal solution to the problem in finite number of steps. Finally, a simple numerical example is given to illustrate the application of the algorithm.
出处 《运筹学学报》 CSCD 北大核心 2005年第2期57-62,共6页 Operations Research Transactions
基金 This paper was partly supported by National Outstanding Young Investigator Grant (70225005) of National Natural Science Foundation of China and Teaching & Research Award Program for Outstanding Young Teachers (2001) in Higher Education Institutions of Ministry of Education, China.
关键词 全局优化方法 对偶问题 线性规划问题 线性规划方法 全局最优解 全局收敛性 可行域 对偶理论 极点 有限 Operations research, bilevel linear programming, dual problem, extreme point, global convergence
  • 相关文献

参考文献13

  • 1Jeroslow R. G. The polynomial hierarchy and a simple model for competitive analysis. Mathematical Programming, 1985, 32: 146~164.
  • 2Ben-Ayed O., Blair C. E. Computational difficulties of bilevel linear programming. Operations Research, 1990, 38: 556~560.
  • 3Bard J. F. Some properties of the bilevel programming problem. Journal of Optimization Theory and Applications, 1991, 68: 371~378.
  • 4Bialas W. F., Karwan M. H. On two-level optimization. IEEE Trans. AC, 1982, 27: 211~214.
  • 5Bialas W. F., Karwan M. H. Two-level linear programming. Management Science, 1984,30(8): 1004~1020.
  • 6Candler W., Townsley R. A linear two-level programming problem. Computers and Operations Research, 1982, 9: 59~76.
  • 7Bard J. F., Falk J. E. An explicit solution to the multi-level programming problem. Computers and Research, 1982, 9(1): 77~100.
  • 8Bard J. F., Moore J. T. A branch and bound algorithm for the bilevel programming problem. SIAM Journal of Scientific and Statistical Computing, 1990, 11(2): 281~292.
  • 9Anandalingam G., White D. J. A solution method for the linear static Stackelberg problems using penalty functions. IEEE Trans AC, 1990, 35(10): 1170~1173.
  • 10White D. J., Anandalingam G. A penalty function approach for solving bilevel linear programs. Journal of Global Optimization, 1993, 3: 397~419.

同被引文献75

引证文献13

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部