期刊文献+

基于FNN的PID非线性系统位置控制

Position Control of Non-Linear System Based on PID of FNN
下载PDF
导出
摘要 针对数学模型不确定的某操瞄控制系统的控制问题,特别是滞环因素给系统的控制精度造成的不利影响,提出了一种基于 Takagi-Sugeno 模型的模糊神经网络(FNN)和比例积分微分(PID)控制的位置控制器和一种基于实数编码的遗传算法优化模型,运用该优化模型优化了控制器参数。仿真结果表明,该控制器具有较好的鲁棒性,采用这种控制器,系统能够高精度、快速、平稳地调转到指定的位置。 A position controller based on FNN(Fuzzy Neural Network)and PID is proposed according to the control problem of manipulation and collimation control system whose model is uncertain.The time-delay of such kind of system backlash affects the precision of controlling.A new optimal model based on real-coded inheritance algorithms is used to optimize the parameters of the controller.Simula- tions show that the controller is robust,highly reliable,and the systems can quickly and steadily move to the given position with high precision.
机构地区 北京理工大学
出处 《火炮发射与控制学报》 北大核心 2005年第2期5-8,共4页 Journal of Gun Launch & Control
基金 北京市教育委员会共建重点实验室项目资助(SYS100070417)
  • 相关文献

参考文献4

  • 1Tao G. and Kokotovic P V. Adaptive control of plants with unknown hysteresis. IEEE Trans. Automat. Contr. 1995, 2(40):200-212.
  • 2David R. Seidl, Sui_lun Lam. Neural network compensation of gear backlash hysteresis in position controlled mechanisms. IEEE Trans actions on industry application, 1995, 11(31):1475-1483.
  • 3Kalyanmoy Deb, Dhiraj Joshi, Ashish Anan. Real-coded evolutionary algrithms with parent-centric recombination. IEEE Transactions on Fuzzy systems, 2002, 2(11):61-66.
  • 4Eshelman L, Schaffer J. Real-coded genetic algorithms and interval-schemata. Foundation of genetic algorithms, 1993, 2(12): 187-202.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部