期刊文献+

增长网络的形成机理和度分布计算 被引量:5

The Mechanisms and Degree Distributions of Growing Networks
下载PDF
导出
摘要 关于增长网络的形成机理,着重介绍由线性增长与择优连接组成的BA模型, 以及加速增长模型.此外,我们提出了一个含反择优概率删除旧连线的模型,这个模型能自组织演化成scale-free(SF)网络.关于计算SF网络的度分布,简要介绍文献上常用的基于连续性理论的动力学方法(包括平均场和率方程)和基于概率理论的主方程方法.另外,我们基于马尔可夫链理论还首次尝试了数值计算方法.这一方法避免了复杂方程的求解困难,所以较有普适性,因此可用于研究更为复杂的网络模型.我们用这种数值计算方法研究了一个具有对数增长的加速增长模型,这个模型也能自组织演化成SF网络. In present paper, we summarize the growing and preferential mechanisms of BA model and the accelerating growth models. We introduce a growing model with the anti-preferential deletion, this system can self-organize a scale-free network. We summarize the Mean-field method, Master-equation and Rate-equation method of calculating degree distributions. We introduce a new numerical method by Markov chains. It can study more complicated models of growing networks. We study a accelerating growth network by Markov method, the system can self-organize a scale-free network.
出处 《应用数学与计算数学学报》 2005年第1期30-38,共9页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金(No.70171059)资助项目.
关键词 复杂网络 择优连接 度分布 加速增长 马尔可夫链 complex networks, growth networks, scale-free networks, mechanism, preferential attachment, accelerating growth, degree distribution, Markov chains
  • 相关文献

参考文献24

  • 1R. Albert, A.-L. Barabasi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74,47 (2002).
  • 2S.H. Strogatz, Exploring complex networks, Nature 410, 268 (2001).
  • 3P. Erdos, A.Renyi, On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci.5, 17 (1960).
  • 4D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks, Nature 393, 440(1998).
  • 5R. Albert, H. Jeong, A.-L. Barabasi, Diameter of the world-wide web, Nature 401, 130 (1999).
  • 6A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science 286, 509 (1999).
  • 7A.-L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free random networks,Physica A 272, 173 (1999).
  • 8R. Albert, H. Jeong, A.-L. Barabasi, Error and attack tolerance of complex networks,Nature 406, 378 (2000).
  • 9A.-L. Barabasi, R. Albert, H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A 281, 69 (2000).
  • 10R. Albert, A.-L. Barabasi, Topology of evolving networks: Local events and universality, Phys.Rev. Lett. 85, 5234 (2000).

共引文献1

同被引文献52

  • 1唐芙蓉,蔡绍洪,李朝辉.无标度网络的嵌入-删除-补偿模型的建立及分析[J].中国矿业大学学报,2005,34(3):390-393. 被引量:13
  • 2吴翠花,万威武.基于组织学习的联盟网络形成机理研究[J].科学学研究,2005,23(5):672-676. 被引量:4
  • 3Bambesi A - L, Albert R, Jeong H. Mean - field theory for scale - free random networks[ J]. Physica A 1999,272 : 173 - 187.
  • 4Shi D H, Chen Q H. Markov chain - based numerical method for degree distributions of growing networks [ J ]. Physical Review E, 2005,71 : 036140 -036148.
  • 5Chen Q H, Shi D H. Markov chains theory for scale - free networks [J]. Physiea A,2006,360:121 - 133.
  • 6He W C, Feng L. Time evolution of the degree distribution of a model of random attachment growing networks [ J ]. Physica A, 2007,384: 663 - 666.
  • 7Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking [ J ]. Physical Review Letters,2000,85 : 4633 -4636.
  • 8Dorogovtsev S N, Mendes J F F, samukhin A N. Size - dependent degree distribution of a scale - free growing network [ J ]. Physical. Review E,2001,63: 062101.
  • 9Krapivsky P L, Redner S, Leyvraz F. Connectivity of growing random networks[ J]. Physical Review Lettere,2000.85: 4629.
  • 10Barabasi A L, Albert R. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(10): 509-512.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部