期刊文献+

中间相炭微球的粒径对其结构和性能的影响 被引量:8

Effects of particle size on structure and characteristics of meso-carbon microbeads
下载PDF
导出
摘要 采用X射线衍射、粒径分析、扫描电子显微镜、BET比表面积分析及电化学方法研究了粒径对中间相炭微球结构和性能的影响。研究结果表明随着粒径的增加,中间相炭微球的堆积密度增大,比表面积减小;中间相炭微球电极的充电容量和不可逆容量减小,可逆容量与首次充放电效率增加;以中间相炭微球为负极制成063448型锂离子电池的放电容量随着中间相炭微球平均粒径的增大而增加,不可逆容量减少;以平均粒径为19.09μm的中间相炭微球为负极制成的电池放电容量为838mA·h,首次充放电效率为87.29%,循环100次后的容量保持率为92.4%。 The effects of particle size on structure and characteristics of meso-carbon microbead (MCMB) were investigated. The MCMB was characterized by X-ray diffraction, particle size analysis, Brunauer-Emmer-Teller (BET) specific surface area and electrochemical measurements. The MCMB powder with larger average particle size has higher tap density and smaller BET surface area. As the average particle size increases, charge capacity and irreversible capacity of the MCMB anode reduce, while the reversible capacity and initial charge/discharge efficiency rise. According to the electrochemical measurements of 063448 type lithium ion batteries, the batteries with larger size MCMB anodes have higher discharge capacity and smaller irreversible capacity. Using the MCMB with average particle size of 19.09 μm as anodes, the batteries have high capacity of 838 mA·h, large initial charge/discharge efficiency of 87.29% and high capacity retention ratio of 92.35% after 100 cycles.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第3期443-447,共5页 Journal of Central South University:Science and Technology
关键词 锂离子电池 中间相炭微球 结构 负极 粒径 容量 lithium ion batteries meso-carbon microbead structure anode particle size capacity
  • 相关文献

参考文献14

  • 1Megahed S, Scrosati B. Lithium-ion rechargeable batteries [J]. Journal of Power Sources, 1994, 51:79 -104.
  • 2Cao F, Barsukov I V, Bang H J, et al. Evalution of graphite materials as anodes for lithium-ion batteries[J]. J Electrochem Soc, 2000, 147(10): 3579 - 3583.
  • 3Wang S, Yata S, Nagano J, et al. A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries [J]. J Electrochem Soc, 2000, 147(7) : 2498 - 2502.
  • 4郭华军,李新海,王志兴,彭文杰,郭永兴.Si-doped composite carbon as anode of lithium ion batteries[J].中国有色金属学会会刊:英文版,2003,13(5):1062-1065. 被引量:6
  • 5Fukuda K, Kikuya K, Isono K, etal. Foliated natural graphite as the anode material for rechargeable lithiumion cells [J]. Journal of Power Sources, 1997, 69:165 - 168.
  • 6Kim C, Fujino T, Miyashita K, et al. Microstructure and electrochemical properties of boron-doped mesocarbon microbeads [J]. J Electrochem Soc, 2000, 147(4): 1257- 1264.
  • 7Xing W, Xue J S, Zheng T, et al. Correlation between lithium intercalation capacity and microstructure in hard carbons [J]. J Electrochem Soc, 1996, 143(11): 3482- 3491.
  • 8Buiel E, George A E, Dahn J R. On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature [J]. J Electrochem Soc, 1998, 145(7): 2252-2257.
  • 9Shi H, Coke V S. Graphite as anodes for lithium-ion batteries [J]. Journal of Power Sources, 1998, 75:64- 72.
  • 10Zaghib K, Tatsumi K, Abe H, et al. Electrochemical behavior of an advanced graphite whisker anodic electrode for lithium-ion rechargeable batteries [J].Journal of Power Sources, 1995, 54:435 -439.

二级参考文献13

  • 1Megahed S, Scrosati B. Lithium-ion reehargeable batteries[J]. J Power Sources, 1994, 51(1). 79-104.
  • 2HANG Shi. Coke vs. graphite as anodes,for liflfiurn-ion batteries[J]. J Power Sources, 1998, 75(1):64 - 72.
  • 3Kuribayashi I, Yokoyama M, Yamashita M. Battery characteristics with various carbonaceous materials[J]. J Power Sources, 1995, 54(1): 1-5
  • 4Chung G C, Kim H J, Yu S I, et al. Origin of graphite exfoliation-An investigation of the important role of solvent cointercalation[J]. J Electrochem Soc, 2000,147(12); 4391-4398.
  • 5Yoshio M, WANG Hong-yu, Fukuda K, et ak Effect of carbon coating on Electrochemical performance of treatednatural graphite as lithiumion battery anode material[J].J Electrochem Soc, 2000, 147(4): 1245 - 1250.
  • 6Peled E, Menachem C, Bar-Tow D, et al. Improved graphite anode for lithium-ion batteries[J]. J Electrochem Soc, 1996, 143(1): 4-7.
  • 7Yu P, Ritter J A, White R E, etal. Ni-compostie microencapsulated graphite as the negative electrode in lithiumion batteries-I: Initial irreversible capacity study[J]. J Electrochem Soc, 2000, 147(4): 1280 - 1285.
  • 8Disma F, Aymard L, Dupont L, et al. Effect of mechanical grinding on the lithium intercalation process in graphites and soft carbons[J]. J Electroichem Soc,1996, 143(12): 3959-3972.
  • 9Kim C, Fujino T, Miyashita K, et al. Microstructure and electrochemical properties of boron-doped misocarbon microbeads[J]. J Electrochem Soc, 2000, 147(4) : 1257 - 1264.
  • 10Wang C S, Wu G T, Zhang X B, et al. Lithium insertion in carbon-silicon composite materials producedby mechanical milling[J]. J Electrochem Soc, 1998,145(8) :2751 - 2758.

共引文献5

同被引文献94

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部