期刊文献+

基于能量特征的小波概率神经网络损伤识别方法 被引量:4

Damage identification methods of wavelet probabilistic neural network based on energy features
下载PDF
导出
摘要 以小波能量特征向量作为概率神经网络(PNN)的输入向量集,提出了小波概率神经网络(WPNN)的损伤识别方法.为了验证该方法的有效性,对钢框架进行了损伤识别研究,并考虑了随机噪声的影响.识别结果表明:WPNN抗噪声能力强,识别精度高,在结构损伤识别与在线检测方面具有潜力. By combining wavelet energy feature vectors with probabilistic neural network (PNN) in noisy conditions,a new damage identification method called wavelet probabilistic neural network (WPNN) was proposed.Damage identification of a steel frame was utilized to illustrate the effect of this method,and the noise was also considered.The identification result showed that it has high identification accuracy and noise-resistant,being of potential in on-line structural damage detection.
出处 《兰州理工大学学报》 CAS 北大核心 2005年第3期123-126,共4页 Journal of Lanzhou University of Technology
基金 国家"十五"科技攻关(2002BA806B4) 国家自然科学基金(50408033) 建设部科技项目(0221.3) 辽宁省自然科学基金(20022136)
关键词 多小波变换 能量特征 结构损伤识别 小波概率神经网络 框架结构 multi-wavelet transform energy feature structural damage identification wavelet probabilistic neural network steel frame
  • 相关文献

参考文献7

二级参考文献24

  • 1马建仓,罗磊.基于小波变换的包络分析及其在故障诊断中的应用[J].机械科学与技术,1996,15(4):585-588. 被引量:2
  • 2张佩瑶,马孝江,王吉军,朱泓.小波包信号提取算法及其在故障诊断中的应用[J].大连理工大学学报,1997,37(1):67-72. 被引量:17
  • 3梅志坚 杨叔子 等.信号功率谱特征变化的时域快速诊断[J].华中理工大学学报,1988,16(3):85-90.
  • 4奚风丰.滚动轴承振动特征频率的傅氏分析[J].轴承,1987,(1):42-47.
  • 5Mallat S. Theory for multi-resolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
  • 6Mallat S. Multi-resolution approximation and wavelet orthonormal based of L^2(R). Transactions of American Mathematics Society, 1989, 16(3):761-767.
  • 7Sohn H and Law K H. A Bayesian pmbabilistic approach for structure damage detection. Earthquake Engineering and Structural Dynamics, 1997, 26:1259 -1281.
  • 8Ko J M, Ni Y Q Chart T H T. Feasibility of damage detection of Tsing Ma Bridge using vibration measurements. In: A E Aktan and S R Gosselin (eds.) Nondestructive Evaluation of Highways, Utilities, and Pipelines IV, 3995. Newport Beach: SPIE, 2000. 370- 381.
  • 9Chen C H. Fuzzy logic and neural network handbook. New York: McGraw-Hill, 1996.
  • 10Masters T. Advanced Algorithms for Neural Networks: A C + + Sourcebook. Chiehester: John Wiley & Sons, 1995.

共引文献146

同被引文献243

引证文献4

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部