期刊文献+

基于BP神经网络的改进算法研究 被引量:24

Study of improving algorithms based on the BP neural network
下载PDF
导出
摘要 文章介绍了传统的BP算法,分析了它的不足之处,详细研究了BP算法的各种改进方法和措施,并通过实例,运用Matlab语言对部分改进算法进行了比较研究。实验结果表明,Levenberg-Marquardt自适应调整算法性能优于其它结合算法,可为其它工程提供参考。 <Abstrcat>The classic back-propagation(BP) learning algorithm of neural network and its disadvantages are introduced briefly. Some measures for improving the BP algorithm are studied by computer simulation using Matlab, and the experiment result show that Levenberg-Marquardt self-adaptation optimization algorithm is better than the others integrated.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期668-671,共4页 Journal of Hefei University of Technology:Natural Science
关键词 神经网络 算法 MATLAB neural network algorithm Matlab
  • 相关文献

参考文献6

  • 1Parlos A G.An accelerated learning algorithm for multiplayer perceptron networks[J].IEEE Trans on Neural Networks,1994,5(3):86-88.
  • 2Ho K L, Hsu Y Y, Yang C C.STLF using a multilayer neural network with an adaptive learning algorithm[J].IEEE Trans on PS,1992,7(1):141-149.
  • 3Maniezzo V. Genetic evolution of the topology and weight distribution of neural networks[J].IEEE Trans on Neural Networks,1994,5(1):39-53.
  • 4Hirose Y.BP algorithm which varies the number of hidden units[J].Neural Network,1991,4(1):61-66.
  • 5Hagan M T,Menhaj M B.Trainning feed forward networks with the Marquardt algorithm[J]. IEEE Trans on Neural Networks,1994,5(6):989-993.
  • 6Rigler A K,Irvine J M, Vogl T P.Rescaling of variables in BP learning[J].Neural Network,1991,4(2):225-229.

同被引文献225

引证文献24

二级引证文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部