期刊文献+

函数类W^1_p(Ω)到Lagrange型有限元空间插值算子

Interpolation from function space W^1_p(Ω) to Lagrange finite element space
下载PDF
导出
摘要 文章给出一种新的方法构造出W1p(Ω)到Lagrange型有限元空间Vh的插值算子,与已有的一般理论相比,该方法有插值算子是完全显式的;插值系数与Vh的基函数无关、插值系数是逐单元进行而非逐点进行且同时算子具有最优逼近阶性质等优点。 <Abstrcat>In this paper a new method is given to construct the interpolation operator from W~~1__p(Ω) to the Lagrange finite element space. In comparison with the known general theories, the presented method has the following advantages:(1) the interpolation operator is completely explicit;(2) the interpolation nodal values are not related to the basis of V_h; and (3) the interpolation nodal values are computed element by element instead of point by point. And the interpolation operator has approximation properties of optimal order. Therefore the interpolation operator given in this paper is easy to construct and convenient to use.
作者 王寿城
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期702-704,共3页 Journal of Hefei University of Technology:Natural Science
关键词 函数类Wp^1(Ω) Lagrange型有限元空间 插值算子 最优逼阶性质 function space W^1_p(Ω) Lagrange finite element space interpolation operator approximation property of optimal order
  • 相关文献

参考文献8

  • 1Scott L R,Zhang S.Finite element interpolation of nonsmooth functions satisfying boundary conditions[J].Math Comp,1990,54(190):483-493.
  • 2Clement P.Approximation by finite element functions using local regularization[J].RAIRO Anal Numer,1975,(9):77-84.
  • 3Bernardi C,Girault V.A local regularization operator for triangular and quadrilateral finite elements[J].SIAM J Numer Anal,1998,35(5):1893-1916.
  • 4Girault V,Scott L R.Hermite interpolation of nonsmooth functions preserving boundary conditions[J].Math Comp,2002,71(239):1053-1074.
  • 5Bramble J H,Xu J.Some estimates for a weighted L2 projection[J].Math Comp,1991,56(194):463-476.
  • 6Cai X-C.The use of pointwise interpolation in domain decomposition methods with nonnested meshes[J].SIAM J Sci Comput,1995,16(1):250-256.
  • 7Brenner S C, Scott L R.The mathematical theory of finite element methods[M].New York:Springer-Verlag,1994.98-122.
  • 8Dupont T,Scott R.Polynomial approximation of functions in Sobolev space[J].Math Comp,1980,34(150):441-463.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部