期刊文献+

行随机矩阵中λ-极大矩阵的注记(英文)

A note of λ-maximizing matrices of row stochastic matrices
下载PDF
导出
摘要 令Λn的所有元素之和为n的非负行随机方阵集合,λ是Λn上的实函数且λ(X)=∏nj=1∑ni=1xij-perX,X=[xij]∈Λn.一个矩阵A∈Λn称为Λn上的λ极大矩阵仅当对所有的X∈Λn,λ(A)≥λ(X).本文证明了A为Λn上的正λ极大矩阵时,必有λ(A)=1-n!nn及A=Jn. Let Λ_n denote the set of all n-square nonnegative row stochastic matrices whose entries have sum n, and let λ be a real valued function on Λ_n defined by λ(X)=∏nj=1ni=1x_(ij)-perX for X=∈Λ_n. A matrix A∈Λ_n is called a λ-maximizing matrix on Λ_n if λ(A)≥λ(X) for all X∈Λ_n. In this paper, the following is proved that if A is a positive λ-maximizing matrix on Λ_n, then λ(A)=1-n!n^n and A=J_n.
作者 李裕镐
出处 《延边大学学报(自然科学版)》 CAS 2005年第2期82-87,共6页 Journal of Yanbian University(Natural Science Edition)
关键词 行随机矩阵 积和式 λ-极大矩阵 row stochastic matrix permanent λ-maximizing matrix
  • 相关文献

参考文献7

  • 1[1]Egoryev G P. A solution van der Waerden's permanent problem(in Russian)[C]. Kransnoyarsk:Reprint IFSO-13M Kirenski Institute of Physics, Acad Sci SSSR, 1980.
  • 2[2]Minc H. Permanents, Encyclopedia of Mathematics and Its Applications[M]. Newyork:Addison-Wesley, 1978.
  • 3[3]Sinkhorn R. A problem related to the van der Waerden permanent theorem[J]. Linear and Multilinear Algebra, 1984,16:167-173.
  • 4[4]Hwang S G. A note on a conjecture on permanents[J]. Lin Alg Applcs, 1986,76:31-44.
  • 5[5]Hwang S G. On a conjecture of E.Dittert[J]. Lin Alg Applcs, 1987,95:161-169.
  • 6[6]Minc H. Theory of permanents, 1978-1981[Z]. Linear and Multilinear Algebra, 1983,12:227-263.
  • 7[7]Hwang S G. The monotonicity and the Dokovic conjecture on permanent of doubly stochastic matrices[J]. Lin Alg Applcs, 1986,79:127-151.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部