期刊文献+

n×n阵列到自身的有界线性算子族问题 被引量:1

The problem about family of bounded linear operator from n×n matrices to itself
下载PDF
导出
摘要 在泛函分析的基础理论中,人们很少去过问n×n阵全体An×n的线性空间问题、范数问题,特别是An×n到自身的有界线性算子的结构,以及有界线性算子的范数问题,如文献[1~4].本文给出了An×n的基底、An×n是线性空间、An×n上多个范数及An×n到自身的线性算子的结构以及算子的范数估计. There were few results about linear spaces of n×n matrices and norms for them in fundamental theories of functional analysis such as the structure of bounded linear operators from A_(n×n) to itself and the problem about norms of bounded linear operator . In this paper, we give a basis of A_(n×n), show that A_(n×n) is a linear space and give several norms on A_(n×n). Besides, we obtain the structure of linear operators which from A_(n×n) to itself and the evaluation of norms of operations.
出处 《延边大学学报(自然科学版)》 CAS 2005年第2期92-96,共5页 Journal of Yanbian University(Natural Science Edition)
关键词 线性空间 算子范数 基底 有界线性算子 linear space norm basis bounded linear operator
  • 相关文献

参考文献2

  • 1[1]夏道行,吴卓人,严绍宗,等.实变函数与泛数分析[M].北京:高教出版社,1985.
  • 2[2]王声望,郑维行.实变函数与泛函分析概要[M].北京:高教出版社,1992.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部