期刊文献+

一体式膜-生物反应器降低能耗的中试试验 被引量:14

Pilot studies on reducing energy consumption of submerged membrane bioreactor.
下载PDF
导出
摘要 基于气升式内循环反应器原理,对一体式膜-生物反应器结构进行了优化设计,构建了处理量为15.6m3/d的中试装置.通过水动力学特性的考察,得到中试装置的经济曝气强度为96m3/(m2·h);通过经济曝气强度条件下的临界通量试验,得到污泥浓度小于13g/L时的膜临界通量区域为30~35L/(m2·h).由此确定了中试装置连续运行的操作参数,实现了次临界通量[30L/(m2·h)]条件下处理城市污水的稳定运行.能耗分析显示,该中试反应器的气水比为21:1,有效单位产水能耗为0.42kW·h/m3. A pilot-scale submerged membrane bioreactor with treating capacity of 15.6 m3/d was developed on the basis of its structural optimization design according to the principle of air-lift internal-loop reactor. Economical aeration intensity of this installation was 96 m3/(m2·h) according to hydrodynamic investigation. Through critical flux test under the condition of economical aeration intensity, critical flux region of the membrane was 30-35 L/( m2·h) when the sludge concentration was less than 13 g/L. Therefore the operation parameters of continuous motion of the pilot installation was determined and under the condition of sub-critical flux of 30 L/( m2·h stable motion of sewage treatment was realized. Energy consumption analysis indicated that the air-to-water ratio of the pilot reactor was 21:1 and the effective unit energy consumption was 0.42 kW·h/m3.
出处 《中国环境科学》 EI CAS CSCD 北大核心 2005年第3期297-301,共5页 China Environmental Science
基金 国家"863"项目(2002AA601220)
关键词 一体式膜-生物反应器 气升式内循环反应器 经济曝气强度 次临界通量 能耗 submerged membrane bioreactor air-lift internal-loop reactor economical aeration intensity sub-critical flux energy consumption
  • 相关文献

参考文献12

  • 1Albasi C, Bessiere Y, Desclaux S, et al. Filtration of biological sludge by immersed hollow-fiber membranes: influence of initial permeability choice of operating conditions [J]. Desalination, 2002,146(1-3):427-431.
  • 2Cho B D, Fane A G. Fouling transients in nominally sub-critical flux operation of a membrane bioreactor [J]. J. Mem. Sci., 2002, 209(2):391-403.
  • 3Ognier S, Wisniewski C, Grasmick A. Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept [J]. J. Mem. Sci., 2004,229(1-2):171-177.
  • 4Tardieu E, Grasmick A, Geaugey V, et al. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment [J]. J. Mem. Sci., 1998,147(1):1-12.
  • 5Defrance L, Jaffrin M Y. Comparison between filtration at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment [J]. J. Mem. Sci., 1999,152(2):203-210.
  • 6Kwon D Y, Vigneswaran S, Fane A G, et al. Experimental determination of critical flux in cross-flow microfiltration [J]. Separation and Purification Technology, 2000,19(3):169-181.
  • 7Yusuf C, Murray M Y. Improve the performance of air-lift reactors [J]. Chemical Engineering Progress, 1993,89(6):38-45.
  • 8Couvert A, Bastoul D, Roustan M, et al. Prediction of liquid velocity and gas hold-up in rectangular air-lift reactors of different scales [J]. Chemical Engineering and Processing, 2001, 40(2):113-119.
  • 9Cockx A, Line A, Roustan M, et al. Numerical simulation and physical modeling of the hydrodynamics in an air-lift internal loop reactor [J]. Chemical Engineering Science, 1997,52(21/22): 3787-3793.
  • 10Liu R, Huang X, Wang C W, et al. Study on hydraulic characteristics in a submerged membrane bioreactor process [J]. Process Biochemistry, 2000,36(3):249-254.

同被引文献341

引证文献14

二级引证文献283

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部