期刊文献+

一种新的基于小波分析与神经网络的织物疵点检测与识别方法 被引量:10

A New Method to Inspect and Recognize Fabric Defects Based on Wavelet Analysis and Neural Network
下载PDF
导出
摘要 提出了一种新的基于小波分析与神经网络的织物疵点检测与识别方法,根据疵点图像形态的先验知识,在织物图像小波分解高频分量中运用数学形态学中的开运算,结合小波高频各子带反映不同边缘细节的特点,去除由棉籽壳与背景光从经、纬纱之间的空隙透射而成的荧光点在织物图像上形成的噪声,提取特征参数,利用神经网络BP算法,有效地检测与识别了缺纬、断经、油污、破洞等常见疵点,并具有识别正确率高、检测速度快等优点。 A new method to inspect and recognize fabric defects based on wavelet analysis and neural network is presented. The method, based on prior knowledge of characteristics of defect image, using open transform of mathematical morphology on high\|frequency components of wavelet decomposition of fabric image, combining with the characteristics that different wavelet subbands show different edge details, eliminating noises that generated on the fabric image by cotton shell and fluorescent dots formed by the back face light coming through the intersections of warps and wefts, extracting the feature parameters, utilizing the BP algorithm of neural network, can efficiently inspect and recognize four common fabric defects—weft-lacking, warp-lacking, oil stains and holes, and have advantages with high identification correctness and high inspection speed.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2005年第6期618-622,共5页 Chinese Journal of Scientific Instrument
关键词 织物疵点 疵点检测 小波分析 神经网络 数学形态学 Fabric defect Defect inspection Wavelet analysis Neural network Mathematical morphology
  • 相关文献

参考文献8

  • 1李立轻,黄秀宝.图像处理用于织物疵点自动检测的研究进展[J].东华大学学报(自然科学版),2002,28(4):118-122. 被引量:58
  • 2Cohen F S, Fan Z, Attali S. Automated inspection of textile fabrics using textual models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):803~808.
  • 3Pei-Wen Chen. Classifying textile faults with a backpropagation neural network using power spectra [J]. Textile Research Journal,1998,68(12):121~126.
  • 4M C Hu, I S Tsai. Fabric inspection based on best wavelet packet bases [J]. Textile Research Journal, 2000,70(8):662~670.
  • 5Chung-Feng Jeffrey Kuo, Ching-Jeng Lee. A backpropagation neural network for recognizing fabric defects [J]. Textile Research Journal,2003,73(2):147~151.
  • 6李立轻,黄秀宝.用于疵点检测的织物自适应正交小波的实现[J].东华大学学报(自然科学版),2002,28(2):77-81. 被引量:19
  • 7Antonini M, Barlaud M, Mathieu P, Daubiechies I. Images compression through wavelet transform coding [J].IEEE Trans on Image Processing, 1992,1(2):205~220.
  • 8唐良瑞.基于小波高频分量的边缘检测方法[J].北方工业大学学报,2002,14(1):13-16. 被引量:10

二级参考文献15

  • 1张立明.人工神经网络的模型及其应用[M].复旦大学出版社,1992..
  • 2焦李成.神经网络计算[M].西安:电子科技大学出版社,1996..
  • 3章毓晋.图像处理和分析[M].清华大学出版社,1999,3..
  • 4焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 5Castleman K R.数字图像处理[M].北京:电子工业出版社,1998.423-430.
  • 6Kenneth R Castleman 朱志刚等(译).数字图像处理[M].北京:电子工业出版社,1998.60-94.
  • 7Carlotto M. Histogram analysis using a scale-space approach. IEEE Trans PAMI, 1982,9: 121~129
  • 8Marr D, Hildreth E. Theory of edge detection. Proc. Roy. Soc. Lond. 1976, B207: 483-524
  • 9Hildreth E. The detection of intensity changes by computer and biological vision systemss. CVGIP, 1983: 22~27
  • 10Mallat S, Zhong S. Characterization of signals from multiscale edges. IEEE Trans IAMI, 1992,14(7): 710~731

共引文献82

同被引文献98

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部