摘要
利用在局部凸空间中与弱拓扑分别具有相同子级数收敛、有界乘数收敛、s-乘数收敛点列的三个最强可允许极拓扑F(μ)、F(μ)、F(μs)的刻划,证明了F(μs0)=F(μ),F(μ∞l∞)=F(μ).
It is shown that F(μ_ s_0)=F(μ) and F(μ_ l ∞)=F(μ *) by using the description of the three strongest admissible polar topologies F(μ),F(μ *) and F(μ_s),which have the same subseries convergent sequences,boundedness multiplier convergent sequences, s-multiplier convergent sequences respectively as weak topology in the locally convex space.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2005年第3期397-400,共4页
Journal of Natural Science of Heilongjiang University
关键词
s-乘数收敛
子级数收敛
有界乘数收敛
可允许极拓扑
s-multiplier convergence
subseries convergence
boundedness multiplier convergence
admissible polar topology