期刊文献+

一种对二维空间对象进行聚类的算法

An Algorithm for Clustering 2-D Spatial Objects
原文传递
导出
摘要 地理信息系统存储了大量的二维空间对象,对这些对象进行聚类分析是数据挖掘的一项重要任务。本文提出一种针对二维空间对象的聚类算法,该算法引用层次聚类方法的思想,将子聚类信息用一个聚类特征表示。采用基于密度的方法,发现任意形状的簇,能较好地处理孤立点,并且支持增量式聚类。实验证明该算法是有效的。 Many 2--D objects have been stored in geographic information system. Clustering those objects is an important task of Data Mining. This paper proposes an density -- based algorithm especially for clustering 2--D spatial objects. By taking the advantage of hierarchical clustering algorithm, it depicts the information of a cluster with a cluster -- feature. Based on density, this algorithm can discover clusters with any shape, identify noises and support incremental clustering. Experiments demonstrate that this algorithm is effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2005年第3期297-302,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.69835010) 国家863高科技(No.2001AA115170)重点资助项目
关键词 空间聚类 基于密度 增量聚类 Spatial Clustering Density--Based Incremental Clustering
  • 相关文献

参考文献5

  • 1Zhang T, Ramakrishnan T, Livny M. BIRCH.- An Efficient Clustering Method for Very Large Databases. In.- Proc of the ACM SIGMOD Workshop on Research Issues on Management of Data. Montreal, Canada, 1996, 103-114.
  • 2Ester M, Kriegel H, Sander J, Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, USA: AAAI Press,1996, 226-231.
  • 3Wang W, Yang J, Muntz R R. STING: A Statistical Information Grid Approach to Spatial Data Mining. In: Proc of the 23rd International Conference on Very Large Data Bases. Athens, Greece, 1997, 186-195.
  • 4Ester M, Frommelt A, Kriegel H, Sander J. Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support. Data Mining and Knowledge Discovery, 2000, 4(2- 3):193-216.
  • 5Shin C L, Liu J Y. Computing the Minimum Directed Distances between Convex Polyhedra. Journal of Information Science and Engineering, 1999, 15(3): 353-373.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部