期刊文献+

Simulation of temporal and spatial change of N_2O emissions in the Yangtze River Delta

Simulation of temporal and spatial change of N_2O emissions in the Yangtze River Delta
下载PDF
导出
摘要 A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N_2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N_2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N_2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N_2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area. Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural areas are included. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N_2O emissions emerges. The results show clearly that both the temporal and the spatial N_2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region. A biogeochemical model(DNDC) is combined with a plant ecological model to estimate N_2O emission from rice paddy fields in the Yangtze River Delta region. The model is driven by local meteorological, soil, and physiological data and is validated for 1999 and 2000 at a site in the region, which showed that the simulated N_2O emissions agree fairly well with the observed data. This adds some confidence in the estimated N_2O emissions during 1950 and 2000 in the Hangzhou Region. A significant correlation between the N_2O emissions and the population for the Hangzhou Region is found, which is due to a combination of increased application of fertilizers and cultivated area. Such a correlation can not be established for the whole Yangtze River Delta region when the data of both urban and rural areas are included. However, when the data from the heavily urbanized areas are excluded, a significant correlation between population and N_2O emissions emerges. The results show clearly that both the temporal and the spatial N_2O emissions have significant positive relationship with population under traditional farming practice. These results have implications for suitable mitigation options towards a sustainable agriculture and environment in this region.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期686-690,共5页 环境科学学报(英文版)
基金 TheKeyProgramoftheNationalNaturalScienceFoundationofChina(No .498992 70 )andSTINTFoundation
关键词 SIMULATION temporal and spatial N_2O emissions Yangtze River Delta China simulation temporal and spatial N_2O emissions Yangtze River Delta,China
  • 相关文献

参考文献3

二级参考文献17

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部