摘要
In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.
In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.
基金
Sponsored by the National Natrural Science Foundation of China (Grant No.59838310).