摘要
用实数集R+上一个含幺Abelian半群的性质来研究n/2/P/Cm浕x调度在一类过程摄动下的鲁棒性.根据实际问题的需要,提出了一类过程摄动模型,并讨论了系统输出表达式及若干性质,最后由最优鲁棒调动的定义,证明了:1°如果ω是标称系统的最优鲁棒调度,则ω必是它的最优调度;2°标称系统的越—韩最优调度必是它的最优鲁棒调度.
In this paper, the robustness of the n/2/P/C_(mɑx) scheduling problem is studied by using a property of Abelian semi-group which containing identity element on the real number set R^+. According to the practical problem, we construct a class of process perturbation system model, propose the system output expression, and give its some properties. Finally, by the definition of optimal robust scheduling, we prove that: 1° if ω~ is the optimal robust scheduling of the reference system, then ω~ must be its optimal scheduling; 2° the Yue-Han's optimal scheduling of the reference system must be its optimal robust scheduling.
出处
《系统工程学报》
CSCD
北大核心
2005年第3期261-265,共5页
Journal of Systems Engineering
基金
湖北省自然科学基金资助项目(2000J1504
2004ABA014).
关键词
半群
*b可行和
集结参数
最优鲁棒调度
semi-group
_b feasible sum
rendezvous parameter
optimal robust scheduling