期刊文献+

基于再生核神经网络的断层面模型重构 被引量:3

Reconstruction of Fault Surface Models Based on Reproducing Kernel Neural Network
下载PDF
导出
摘要 为了提高勘探精度及采油效率,需要更深入地了解地质构造,因此断层面模型的重构有着重要的意义,为此提出了基于再生核神经网络的断层面重构方法。再生核源于不同学科分支,目前已成为函数逼近的重要工具。将再生核与神经网络有机地结合起来,提出一种新型的神经网络———再生核神经网络,且将网络的训练归结为求解线性方程组问题,为了建立既具有足够精度又能表现系统行为的简单模型,考虑线性方程组的稀疏解是必要的,稀疏解就是具有大量零元素的近似解。虽然稀疏解整体误差较小,但可能在一些点上的误差较大,为此提出对稀疏解的误差修正方法。将再生核神经网络应用于大庆地区的断层面模型重构,实验结果表明,本文重构的断层面与传统方法重构的断层面相比,更符合大庆地区的地质情况。 In order to improve the accuracy of prospecting and efficiency of oil extraction, it is necessary to understand the geological construction deeply. Therefore, the reconstruction of fault surface models is highly important. A method for fault surface models reconstruction is proposed in this paper. Reproducing kernel developed in different disciplines has become an important tool in functional approximation. By combining the reproducing kernel and neural network, a new kind of neural networks, i. e. the reproducing kernel neural network (RKNN) has been initiated. Besides, learning of the network is converted into seeking the solution of the linear equations system. It is essential to consider the sparse solution so as to construct a simple model with sufficient accuracy and represent the system behavior. The sparse solution is an approximating solution with a large part of components as zero. Although the over all error is small, errors of some points may be very big. The error correction of the sparse solution is also discussed. The reconstruction of fault surface models based on the reproducing kernel neural network is implemented in Daqing, and the experimental results show that the reconstructed fault surfaces based on the method presented in this paper is more suitable for the geological situation in Daqing compared with traditional method.
出处 《中国图象图形学报》 CSCD 北大核心 2005年第6期721-724,共4页 Journal of Image and Graphics
关键词 再生核 断层面重构 稀疏解 reproducing kernel, fault surface reconstruction, sparse solution
  • 相关文献

参考文献5

  • 1增文冲.油气藏储集层测井评价技术[M].北京:石油工业出版社,1991.20-40.
  • 2文松龙,崔明根.W空间中最佳逼近插值算子[J].计算数学,1997,19(2):177-184. 被引量:15
  • 3Shin Suzuki. Constructive function-approximation by three artificial neural[J]. Neural Networks, 1998, 11: 1049~1058.
  • 4Ning Qian. On the momentum term in gradient descent learning algorithms[J]. Neural Networks, 1999,12: 145~151.
  • 5Gomm J B, Yu D L. Selecting radial basis function network centers with recursive orthogonal least squares training [J]. IEEE Transactions on Neural Networks, 2000, 11(2): 306~313.

二级参考文献2

  • 1崔明根,数学物理学报,1988年,8卷,2期,139页
  • 2崔明根,计算数学,1986年,8卷,2期,209页

共引文献14

同被引文献9

  • 1高望东,姜家辉,张勇.求解大型线性稀疏方程组的中心线法[J].工程数学学报,1997,14(1):92-98. 被引量:3
  • 2G Ramponi.Warped distance for space-variant linear image interpolation[J].IEEE Trans.Image Processing,1999,8:629-639.
  • 3K Jensen and D Anastassio.Subpixel edge localization and the interpolation of still images[ J].IEEE Trans.Image Processing,1995,4:285 -295.
  • 4J Allebach and P W Wong.Edge-directed interpolation[ C ].in IEEE Proc.ICIP,1996:707-710.
  • 5W K Carey,D B Chuang,and S S Hemami.Regularity -preserving image interpolation[ J ].IEEE Trans.Image Processing,1999,8:1293-1297.
  • 6X.Li.Edge Directed Statistical Inference With Applications to Image Processing[ D ].Ph.D.dissertation,Princeton University,Princeton,NJ,2000.
  • 7Jayanta Mukheijee,Michael S Moore,Sanjit K Mitra.Color Demosaicing with Constrained Buffering[ C ].International Symposium on Signal Processing and its Applications (ISSPA),2001.52 -55.
  • 8Ming-gen CUI,Ying-zhen LIN,Li-hong YANG.A new method of solving the coefficient inverse problem[J].Science China Mathematics,2007,50(4):561-572. 被引量:2
  • 9杜红,母丽华,沈继红.求解大型线性稀疏方程组改进的中心线法[J].科技导报,2009,27(13):88-91. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部