期刊文献+

基于类间最近邻支持向量信息测度排序的快速分类算法研究

A Fast Support Vector Classification Algorithm Based on the Sort of Nearest Neighborhood Information Measure
下载PDF
导出
摘要 提出了基于特征空间中最近邻类间支持向量信息测度排序的快速支持向量机分类算法,对于训练样本首先进行最近邻类间支持向量信息测度升序排列处理;然后根据排序的结果选择最优的训练样本子空间,在选择的样本子空间内采用乘性规则直接求取Lagrange因子,而不是传统的二次优化方法;最后加入附加剩余样本进行交叉验证处理,直到算法满足收敛性准则。各种分类实验结果表明,该算法具有非常良好的性能,特别是在训练样本庞大,支持向量数量较多的情况下,能够较大幅度地减少计算复杂度,提高分类速度。 To improve the training speed performance of large-scale support vector machine(SVM), a fast algorithm is proposed in this paper by exploiting the geometric distribution of support vector in feature space. A support vector information measure definition based on the nearest inter-classes distance is set up and a sort process is presented. Then a reduced number of sample subspace is extracted for support vector training. In addition, instead of the traditional quadratic programming, multiplicative update is used to solve Lagrange multiplier in optimizing the solution of support vector. The samples of rest are used for cross validating till the algorithm is convergence. Experimental results demonstrate that this method has better performance and has overcome the flaw of standard SVM. This algorithm could greatly reduce the computational load and increase the speed of training, especially in the case of large number of training samples.
作者 胡正平 张晔
出处 《中国图象图形学报》 CSCD 北大核心 2005年第6期758-761,共4页 Journal of Image and Graphics
基金 国家自然科学基金项目(60272073)
关键词 支持向量机 核函数 乘性规则 support vector machines, kernel function, multiplicative update
  • 相关文献

参考文献8

  • 1Platt J C. Fast algorithm for training support vector machines using Sequential minimimal optimization [A]. In: Advance in kernel methods-support vector learning [M] , Scholkopf B, Burges C J C,Smola A J, editors, Combridge, MA, USA: MIT Press, 1999:185~208.
  • 2Hu W J, Song Q. An accelerated decomposition algorithm for robust support vector machines [J]. IEEE Transactions on Circuits and Systems-II: Express Briefs, 2004, 51 (5) :234~240.
  • 3Joachims T. Making large-scale support vector machine learning practical[ A ]. In: Advance in kernel methods-support vector learning [M], Scholkopf B, Burges C J C, Smola A J, editors, Cambridge,MA, USA: MIT Press, 1999:169~184.
  • 4Lin Kuan-Ming, Lin Chih-Jen. A study of reduced support vector machines [J]. IEEE Transactions on Neural Networks, 2003,14(6) :1449~1459.
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293~300.
  • 6李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71
  • 7焦李成,张莉,周伟达.支撑矢量预选取的中心距离比值法[J].电子学报,2001,29(3):383-386. 被引量:48
  • 8Sha F,Saul L K,Lee D D. Multiplicatve updates for nonnegative quadratic programming in support vector machines[EB/OL]. http:∥www. cs. cmu.edu/groups/NIPS/NIPS2002/NIPS2002 preproceedings/papers/AA71. htm1, 2002-07-15.

二级参考文献10

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 7Schlkopf B,IEEE Transactions on Signal Processing,1997年,45卷,11期
  • 8阎平凡.对多层前向神经网络研究的进一步看法[J].电子学报,1999,27(5):82-85. 被引量:25
  • 9张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 10张鸿宾,孙广煜.近邻法参考样本集的最优选择[J].电子学报,2000,28(11):16-21. 被引量:8

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部