期刊文献+

相场法模拟中影响侧向分支的相场参数 被引量:9

EFFECTS OF PHASE-FIELD PARAMETERS ON SIDEBRANCHING USING PHASE FIELD SIMULATION
下载PDF
导出
摘要 使用耦合热扰动的相场模型,研究相场参数对枝晶侧向分支的影响。结果表明,随着过冷度的增大,包围等轴晶的热扩散层越薄,这越有利于侧向分支的生长,使枝晶侧向分支越发达。各向异性系数ε影响枝晶尖端稳态行为,ε越大,枝晶生长速度越大,侧向分支越发达,二次枝晶间距越小:耦合系数λ越小,尖端生长速度较快收敛于格林函数计算值,侧向分支越发达;热扰动幅值Fu对温度场的影响明显,当Fu取值适当时,热噪声可以引发侧向分支,但是不影响尖端的稳态行为。 The dependence dendritic sidebranching on phase-field parameters is studied by using a phase-field model which incorporates thermal noise quantitatively. The calculated results indicate that, with the increment of undercooling, the thermal diffusion layer collected around the equiaxed dendritic is more thin, which is advantageous to the growth of the sidebranching and the equiaxed dendritic presents the morphology of developed side-branching; The anisotropy parameter ε influence the steady state of the dendrite tip, the larger ε, the quicker the dendrite tip velocity is, the more developed the side-branches are and the smaller the DAS are; The smaller coupling coefficient λ, the quicker the dendrite tip velocity converges on the Green function calculation, the more developed the side-branches are; The magnitude of thermal noise influence temperature field obviously, when appropriate value is assigned to Fu, noise can enhance the emergence of side-branching but does not influence the tip operating state.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第6期30-34,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50005011 59990490)。
关键词 相场方法 热噪声 过冷度 侧向分支 数值模拟 Phase-field Method Thermal noise Undercooling Sidebranching Numerical simulation
  • 相关文献

参考文献10

  • 1Barber M N, Barbieri A, Langer J S. Predictions of dendritic growth rates in the linearized solvability theory. Phys.Rev. A, 1987, 39(10): 5314-5420.
  • 2Langer J S. Stability effects in dendtitic crystal growth. J.Cryst. Growth, 1977, 42:11-18.
  • 3Brener E, Temkin D. Three-dimensional dendritic growth.Physica A, 1999, 263(4):338-344.
  • 4Kobayasi R. Modeling and numerical simulation of the dendritic growth. Physica D, 1993, 63:410-423.
  • 5Wheeler A A, Murray B T, Schaefer R J. Computation of dendritic using a phase field model. Physica D, 1993,66(10): 243-262.
  • 6Murray B T, Wheeler A A, Glicksman M E. Simulation of experimentally observed dendritic growth behavior using a phase-field model. J. Cryst. Growth, 1995, 154:386-400.
  • 7Karma A, Rappel W J. Phase-field model of decdritic sidebranching with thermal noise. Phys. Rev. E, 1999,60(4): 3164-3624.
  • 8Li Q, Beekermann C. Evolution of the sidebranch structure in free dendritic growth. Acta. Mater., 1999, 47(8):2345-2356.
  • 9Karma A, Rappel W J. Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E, 1996, 53(4): 3017-3020.
  • 10Kessler D A, Levine H. Velocity selection in dendritic growth. Phys. Rev. B, 1986, 33(11): 7867-7870.

同被引文献59

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部