期刊文献+

一维杆状声子晶体振动中的表面局域态研究 被引量:12

RESEARCH ON THE SURFACE LOCALIZED VIBRATION MODES IN ONE DIMENSINAL PHONONIC CRYSTALS COMPOSED OF ROD STRUCTURES
下载PDF
导出
摘要 从两种材料组成的一维杆状声子晶体的振动方程出发,给出无限周期结构的振动波色散关系和半无限周期结构表面波色散关系。发现带隙宽度、表面波频率均与材料组份比有关。对于具有自由表面的声子晶体,当自由表面层材料的速度小于另外一种材料速度时,存在表面局域态。利用有限元法,仿真了有限结构声子晶体的振动频率响应。当存在表面局域态时,振动频率响应在带隙频率范围内出现共振峰,这些共振峰至少减小了声子晶体20dB的减振效果。 Based on the vibrational equation of the one-dimensional thin rod phononic crystals composed of two kind of material, the vibrational wave and surface wave implicit dispersion relation in periodically layered infinite and semi-infinite media are provided. The width of band gaps and surface wave frequency both relate with the material portion ratio. For the phononic crystals with a free surface, the necessary condition for the existence of the surface localized modes in the free surface is found to be the velocity of the material with free surface less than that of the other material. Using the finite element method, the vibrational frequency response of finite-size phononic crystals and found the particular resonance peak due to the surface localized modes in the band gaps is calculated. These resonance peaks decreae the frequency response attenuation at least 20 dB.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第6期35-38,共4页 Journal of Mechanical Engineering
基金 国家973重大基础研究资助项目(51307)。
关键词 声子晶体 振动带隙 表面局域态 Phononic crystals Vibration band gap Surface localized modes
  • 相关文献

参考文献13

  • 1Steven G J, John D J. Photonic Crystal. Kluwer Academic Publishers, 2002.
  • 2Camley R E, Djafari-Rouhani B, Dobrzynski L, et al.Tansverse elastic waves in periodically layered infinite and semi-infinite media. Phys. Rev. B, 1983, 27 (12):7318-7329.
  • 3Tamura S, Hurley D C, Wolfe J P. Acoustic-phonon propagation in superlattices. Phys. Rev. B, 1988, 38 (2):1427-1449.
  • 4Seiji M, Shin-ichiro T. Resonant interaction of phonons with surface vibrational modes in a finite-size superlattice.Phys. Rev. B, 1996, 53 (8): 4549-4552.
  • 5Seiji M, Shin-ichiro T. Anomalous delay of phonons reflected from the surface of a superlattice. Applied Surface Science, 2002 (190): 200-204.
  • 6Seiji M. Resonant interaction of bulk phonons with phonons localized at a superlattice- liquid interface.Physica B, 2002 (316,317): 230-233.
  • 7Seiji M. Phonon propagation through a superlattice-solid interface: localized vibrational modes and resonant transmission. Physica E, 2003 (7): 318-319.
  • 8Jakob S J, Ole S, Jon J T, et al. Design of multi-phase structures with optimized vibrational and wave-transmitting properties. 15th Nordic Seminar on Computational Mechanics, 2002:63-66.
  • 9王刚,温激鸿,刘耀宗,郁殿龙,赵宏刚.一维粘弹材料周期结构的振动带隙研究[J].机械工程学报,2004,40(7):47-50. 被引量:18
  • 10王刚,温激鸿,韩小云,赵宏刚.二维声子晶体带隙计算中的时域有限差分方法[J].物理学报,2003,52(8):1943-1947. 被引量:51

二级参考文献16

  • 1Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physics Review Letters, 1987, 58:2 059~2 062
  • 2John S. Strong location of photons in certain disordered dielectric superlattices. Physics Review Letters, 1987, 58: 2 486~2 489
  • 3Kushwaha M S. Classical band structure of periodic elastic composites. Int. J. Mod. Phys. B, 1996, 10(9):977~1 094
  • 4Kushwaha M S, Halevi P, Dobrzysnki L, et al. Acoustic band-structure of periodic elastic composites. Physics Review Letters, 1993, 71(13):2 022~2 025
  • 5Wu F G, Liu Z Y, Liu Y Y. Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. Journal of Physics D:Applied Physics, 2002, 35:162~165
  • 6Vasseur J O, Deymier P A, Chenni B. Experimental and theoretical evidence for the existence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Physics Review Letters, 2001, 86:3 012~3 015
  • 7Kafesaki M, Penciu R S, Economou E N. Air bubbles in water:A strongly multiple scattering medium for acoustic waves. Physics Review Letters, 2000, 84:6 050~6 053
  • 8García-Pablos D, Sigalas M, Montero de Espinosa F R, et al. Theory and experiments on elastic band gaps. Physics Review Letters, 2000, 84:4 349~4 352
  • 9Liu Z Y, Zhang X X, Mao Y W, et al. Locally resonant sonic materials. Science, 2000, 289(8):1 734-1 736
  • 10丁文镜. 减振理论. 北京:清华大学出版社, 1988

共引文献62

同被引文献107

引证文献12

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部