期刊文献+

一类分数阶微分方程的本征值问题 被引量:3

Eigenvalue problems for fractional differential equations
下载PDF
导出
摘要 分数阶微分方程是含有分数次微分(或分数次积分)的方程,是整数阶微分方程的推广,在各个科学领域(如物理、机械、化学、工程等)中得到了非常广泛的应用.本文讨论一类分数阶微分方程的本征值问题和其与相邻的整数阶微分方程本征值问题之间的联系. Differential equations of fractional order have played a significant role in engineering, science, economy and other fields. In this paper, we deal with some classes of eigenvalue problems for fractional differential equations and consider relations with corresponding eigenvalue problems for differential equations of integer order.
作者 张淑琴
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期98-101,共4页 Journal of Lanzhou University(Natural Sciences)
关键词 分数阶微分方程 本征值问题 本征函数 拉普拉斯变换 特殊函数 fractiona differential equation eigenvalue problem eigenvalue function Laplace transform special function
  • 相关文献

参考文献7

  • 1Osama L Moustafa. On the cauchy problem for some fractional order partial differential equations[J]. Chaos, Solitons Fractals, 2003, 18: 135-140.
  • 2Kochubei A N. A Cauchy problem for evolution equations of fractional order[J]. Differential Equations, 1989, 25: 967-974.
  • 3Pshu A V. Solutions of a boundary value problem for a fractional partial differential equation[J]. Differential Equations, 2003, 39(8): 1150-1158.
  • 4Domenico Delbosco, Lui Rodino. Existence and uniqueness for a nonlinear fractional differential equation[J]. J Math Appl, 1996, 204: 609-625.
  • 5Podlubny I. Fractional Differential Equations[M].San Diego: Academic Press, 1999.
  • 6Samko S G, Kilbas A A, Marichev O I. Fractional Integral and Derivatives (Theorey and Applications)[M]. New York: Gordon and Breach, 1993.
  • 7Enzo Orsingher, Luisa Reghin. Time-fracyinal telegraph equations and telegraph processes with brownian time[J]. Probab Theory Relat Fields, 2004,128: 141-160.

同被引文献10

  • 1桂易清,陆善镇,杨大春.BESOV SPACES B_p^(α,p) ON DOMAINS AND LAPLACE OPERATORS[J].Acta Mathematica Scientia,2002,22(3):413-418. 被引量:1
  • 2易法槐,邱宜坪.ON STEFAN PROBLEM WITH PRESCRIBED CONVECTION[J].Acta Mathematica Scientia,1994,14(2):153-166. 被引量:1
  • 3张淑琴.有限区间上的分数阶扩散波方程的解[J].西北师范大学学报(自然科学版),2005,41(2):10-13. 被引量:6
  • 4PODLUBNY I. Fractional Differential Equations[M]. San Diego: Academic Press, 1999.
  • 5SAMKO S G, KILBAS A A, MARICHEV O I.Fractional Integral and Derivatives ( Theorey and Applications)[M]. New York: Gordon and Breach,1993.
  • 6MOUSTAFA L O. On the Cauehy problem for some fractional order partial differential equations [J].Chaos, Solitons, Fractals, 2003, 18: 135-140.
  • 7KOCHUBEI A N. A Cauchy problem for evolution equations of fractional order [J], Differential Equations, 1989, 25.. 967-974.
  • 8PSHU A V. Solutions of a boundary value problem for a fractional partial differential equation [J ].Differential Equations, 2003, 39(8) : 1150-1158.
  • 9ORSINGHER E, REGHIN L. Time- fractional telegraph equations and telegraph processes with Brownian time [J]. Probab Theory Relat Fields,2004, 128: 141-160.
  • 10Yi Qing GUI,Shan Zhen LU,Da Chun YANG Department of Mathematics. Beijing Normal University. Beijing 100875. P. R. China.The Besov Space B_1^(0.1) on Domains[J].Acta Mathematica Sinica,English Series,2001,17(2):181-196. 被引量:2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部