期刊文献+

基于数据融合的入侵防御模型 被引量:1

An Intrusion Prevention Model Based on Data Fusion
下载PDF
导出
摘要 首先分析了目前比较热门的入侵防御系统的体系结构,并指出了传统单个入侵防御系统会导致单点故障、拒绝正常服务等一系列问题,同时还存在不能检测分布式协作攻击和未知攻击及性能等问题。为了解决传统IPS上述的缺点,在原有的两类入侵事件的基础上重新划分,把入侵事件分为三类,并结合多传感器数据融合技术和入侵容忍技术提出一种深度入侵防御模型。最后通过仿真实验验证了该模型检测和防御入侵的可行性。 At first, this paper analyses popular IPS in detail and points out it’s advantage and insufficiency, such as single-end failure , denial-of-service and so on. At the same time traditional IPS do not detect distributed cooperation and unknown attack. The intrusion affairs are partitione d three kinds on the basis of two types. Combining data fusion algorithm of multi-sensors an d the intrusion tolerance, a detection and defense-detection and response model based on defense in depth theory is proposed, in order to solve the problem of the traditional IPS. In the end, the simulation results validate the feasibility of this model’s detection and prevention of intrusion.
出处 《计算机应用研究》 CSCD 北大核心 2005年第7期140-142,共3页 Application Research of Computers
基金 国家信息产业部基金资助项目(211070B414) 国家"十五"项目 "211工程"重点学科建设项目(181070H901)
关键词 入侵防御 深度防御 数据融合 Intrusion Prevention Defense in Depth Data Fusion
  • 相关文献

参考文献6

  • 1Dan Galik. Defense in Depth :Security for Network2 Central Warefare[EB/OL]. http://www. chips. navy. mil/archives/98-apr/galik. html, 1998-11-12.
  • 2Huang Zunguo, Lu Xicheng,Wang Huaimin. A Diversified Dynamic Redundancy Method Exploiting the Intrusion Tolerance [C].ISW22000 Proc. ,2000.
  • 3P Ning, Y Cui, D S Reeves. Constructing Attack Scenarios Through Correlation of Intrusion Alerts [C].Washington,D.C.:Proceedings of the 9th ACM Conference on Computer and Communications Security, 2002. 245-254.
  • 4钟力 姚兰.一手检测一手阻击,IPS两手构筑实时防线[J].网络世界,2003,855(34):21-24,26.
  • 5D Curry, Merrill Lynch,H Debar,et al. The Intrusion Detection Message Exchange Format, draft-ieff-idwg-idmef-xml-11[ EB/OL]. http : // www. ieff. org/ internet-drafts/ draft-ieff-idwg-idmef - xml-11 . txt ,2004-01-08.
  • 6The South Florida Honeynet Project,GenⅡ Data Control for Honeynets Understanding and Building Snort-Inline Data Control [EB/OL]. http ://www. sfhn. org/whites/gen2. html, 2002-01-08.

共引文献1

同被引文献8

  • 1耿俊燕,吴灏,曾勇军,张连杰.数据挖掘在入侵检测系统中的应用研究[J].计算机工程与设计,2005,26(4):870-872. 被引量:19
  • 2伊胜伟,刘旸,魏红芳.基于数据挖掘的入侵检测系统智能结构模型[J].计算机工程与设计,2005,26(9):2464-2466. 被引量:10
  • 3Zhang Xinyou,Li Chengzhong,Zheng Wenbin.Intrusion prevention system design[J].IEEE Computer and Information Technology,2004,(4):386-390.
  • 4Su Chien-Chung,Chang Ko-Ming,Kuo Yau-Hwang,et al.The new intrusion prevention and detection approaches for clustering-based sensor networks[wireless sensor networks][J].IEEE Wireless Communications and Networking Conference,2005,(4):1927-1932.
  • 5Huang Nen-Fu,Kao Chia-Nan,Hun Hsien-Wei,et al.Apply data mining to defense-in-depth network security system[J].IEEE AINA,2005,(2):159-162.
  • 6Data mining:What is data mining[EB/OL].http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm.
  • 7BroadWeb Corporation.NetKeeper-IPS[EB/OL].http://www.broadweb.com.
  • 8The South Florida Honeynet Project.Gen IIData control for honeynets understanding and building snort-inline data control[EB/OL].http://www.sfhn.org/whites/gen2.html.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部