期刊文献+

基于小波域正则化和贝叶斯规则的图像恢复算法 被引量:2

Image Denosing Based on Wavelet Regularity and Bayesian Regulati on
下载PDF
导出
摘要 提出了将小波变换的正则化图像恢复与贝叶斯统计模型分析相结合的方法用于对图像进行消噪处理。正则化图像恢复是条件约束的最优化问题,而小波系数的贝叶斯统计选择是基于图像的随机场观点。两者的有机结合可以辨证地处理正则化参数和算子的选择以及先验模型的分布计算问题。 This work puts forward a new algorithm that the wavelet transformation regularity for image restoration connects with Bayesian statistic modeling, as to make an image denosing. A regularized image restoration is the optimization for some conditional constraint, and the selection of wavelet coefficients based Bayesian statistic is on the image random field view. We could dialectically give the processing about choices of regularity coefficients, operators and the calculation of distributed prior-models according to the two former conditions.
作者 李朝晖 陈明
机构地区 西北工业大学
出处 《计算机应用研究》 CSCD 北大核心 2005年第7期174-176,共3页 Application Research of Computers
关键词 小波域 正则化 马尔可夫随机场 贝叶斯规则 Wavelet-domain Regularity Markov Random Field Bayesian Regulation
  • 相关文献

参考文献5

  • 1D L Donoho, et al.Adapting to Unknown Smoothness via Wavelet Shrinkage [J]. Amer.Stat. Assoc.,1998,(3):197- 211.
  • 2Y Xu, J B Weaver, D M Healy,et al. Wavelet Transform Domain Filters: A Spatially Selective Noise Filtration Technique [J].IEEE Trans. Image Processing, 1994,(3):747- 758.
  • 3S Mallat, W L Hwang. Singularity Detection and Processing with Wavelets[J]. IEEE Trans. Inform. Theory, 1992,38:617-643.
  • 4J E Besag. Spatial Interaction and the Spatial Analysis of Lattice System [J].Roy. Stat.Soc. ,Ser. B, 1974,36 : 192- 236.
  • 5N Metropolis, et al. Equation of State Calculations by Fast Computing Machines[J]. Chem. phys. 1953,21:1087-1092.

同被引文献15

  • 1PARK S C,PARK M K,KANG M G.Super-resolution image recon-struction:a technical overview[J].IEEE Signal ProcessingMagazine,2003,20(3):21-36.
  • 2UR H,GROSS D.Improved resolution from sub-pixel shifted pictures[J].CVGIP Graphical Models and Image Processing,1992,54(2):181-186.
  • 3KEREN D,PELEG S,BRADA R.Image sequence enhancementusing sub pixel displacements[C]//Proc of the IEEE Computer Soci-ety Conference on Computer Vision and Pattern Recognition.1988:742-746.
  • 4BAKER S,KANADE T.Limits on super-resolution and how to breakthem[C]//Proc of IEEE Conference on Computer Vision and PatternRecognition.Washington DC:IEEE Computer Society,2000:372-379.
  • 5SCHULZ R R,STEVENSON R L.A Bayesian approach to image ex-pansion for improved definition[J].IEEE Trans on Image Pro-cessing,1994,3(3):233-242.
  • 6NGUYEN N,MILANFAR P.A wavelet-based interpolation restora-tion method for superresolution[J].Circuits,Systems,and SignalProcessing:Special Issue on Advanced Signal and Image Re-construction,2000,19(4):321-338.
  • 7SALZENSTEIN F,COLLET C.Fuzzy Markov random fields versuschains for multispectral image segmentation[J].IEEE Trans on Pat-tern Analysis and Machine Intelligence,2006,28(11):1753-1767.
  • 8FAN Xin,HUANG Hua,LIANG De-qun,et al.A hybrid parallelprojection approach to object-based image restoration[J].PatternRecognition Letters,2006,27(10):1045-1053.
  • 9Zhang W,Cham W-K A single image based blind su-per-resolution approach Image Processing[C]∥pro-ceedings of the 15th IEEE International Conference onImage processing.San Diego CA:IEEE,2008:329-332.
  • 10Xin Fan,Hua Huang,Dequn Liang,et al.A hybridparallel projection approach to object-based image res-toration[J].Pattern Recognition Letters,2006,27(10):1045-1053.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部