期刊文献+

用自联想网络处理带噪声的发动机数据

Processing Data of Engine with Noise by Auto-associative Neural Network
下载PDF
导出
摘要 研究了用自联想网络(AANN)进行数字滤波的方法。自联想网络采用一种带有瓶颈层的特殊结构,且具有单位总增益。在经过大量带噪声样本的训练之后,各变量之间能够建立起内在联系。输入信息通过瓶颈层前的压缩及瓶颈层后的解压缩过程,信息中的精华将被提取,从而使人们能够利用冗余信息抑制其测量噪声,使发动机测量参数在最大程度上减少噪声对其带来的负面影响。 The method of digital filtering by auto-associative neural network (AANN) is studied. The AANN adopts a special structure with abottle-nect layer and has an unit overall gain. The internal relation between the variables can be built after the training of a large amount of noise samples. The quintessence of the information can be extracted through the compression before the bottle-nect layer and the decompression after that. And then the redundant information can be used to restrain the noise during the measurement. The negtive effect of the noise upon the paramenter measurement of the aero-engine can be reduced maximally.
出处 《计测技术》 2005年第2期14-16,共3页 Metrology & Measurement Technology
关键词 自联想网络 航空发动机 噪声 数字滤波 aero-engine auto-associative neural network noise digital filtering
  • 相关文献

参考文献3

二级参考文献12

  • 1张兴民,毛玉华,朱剑峰,马昭彦.利用图论方法进行多不良数据检测与辨识[J].中国电机工程学报,1997,17(1):69-72. 被引量:29
  • 2Lu P J, Zhang M C, Hsu T C, et al. An evaluation of engine faults diagnostics using artificial neural networks [A]. Proceedings of ASME TURBOEXPO 20001[C]. Munich Germany,2000. 1-7.
  • 3Volponi A J,DePold H,Ganguli R,et al. The use of Kalman filter and neural networks methodologies in gas turbine performance diagnostics: a comparative study[A]. Proceedings of ASME TURBO EXPO 2000[C]. Munich Germany,2000. 1-9.
  • 4Zedda M, Singh R. Fault diagnosis of A turbofan engine using neural networks: a quantitative approach[R]. AIAA-98-3602,1998.
  • 5Guo T H, Saus J, Lin C F, et al. Sensor validation for turbofan engines using an autoassociative neural networks[R]. AIAA-96-3926,1996.
  • 6司风琪(SI Fengqi),电站性能在线监测中的数据检验和热力系统模型研究(Study on data validation and thermodynamic system model of the online performance monitoring in power plant)[D],东南大学(Southeast University),2001.
  • 7胡华进(HU Huajin),火电机组性能监测问题的研究(Study on performance monitoring in power plant)[D],东南大学(Southeast University),1998.
  • 8Mark A. Kramer, Nonlinear principal component analysis using autoassociative neural networks[J], AIChE journal, 1991, 37(2):233-243.
  • 9焦李成(Jiao Licheng),神经网络的应用与实现(Application and actualization of neural networks)[M],西安:西安电子科技大学出版社(Xian: Xidian University Press), 1993.
  • 10方泽南,傅尚新,张勇.时间序列在故障诊断中的应用[J].清华大学学报(自然科学版),1998,38(9):123-126. 被引量:25

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部