期刊文献+

杂环导电聚合物聚吡咯对神经修补元件的表面改性 被引量:2

SURFACE MODIFICATION OF A NEURAL PROSTHETIC DEVICE WITH HETEROCYCLIC CONDUCTING POLYMER POLYPYRROLE
下载PDF
导出
摘要 将杂环导电聚合物聚吡咯经电化学聚合精确沉积于神经修补元件的各个电极上,经扫描电子显微镜及原子力显微镜分析,该聚吡咯涂层具有高粗糙度的菜花状形貌,该形貌具有较大的表面积,可为神经修补元件与中枢神经组织提供紧密的接触,并可将原电极在1kHz处的阻抗值降低两个数量级。利用纳米硬度仪得到的载荷-位移曲线表明,聚吡咯涂层具有疏松的表面结构,在受到压力时,涂层渐被压实,涂层的平均模量为1.3GPa,介于修补元件材料与中枢神经组织之间,在力学模量上起到了良好的中间过渡层作用。 Heterocyclic conducting polymer polypyrrole was electrochemically deposited precisely onto the electrodes of neural prosthetic devices. SEM and AFM indicated that the morphology of the coating is a nodular surface with high roughness thus it can provide an intimate contact between the prosthetic device and the brain tissue. At 1 kHz, the lowest magnitude of the impedance of the coating can be two orders lower than that of the bare gold electrode. Nanoindentation characterization demonstrated that the coating has a porous surface morphology and can be densified in the progress. The average modulus of the coating is (1.3) GPa, which is between the modulus of the prosthetic device and that of the brain tissue.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2005年第3期262-265,共4页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(50373019)
关键词 聚吡咯 神经修补元件 表面改性 力学模量 polypyrrole neural prosthetic device surface modification mechanical property
  • 相关文献

参考文献11

  • 1Wise K D, Najafi K. Science, 1991, 254: 1335~1342.
  • 2Weppelmann E R, Field J S, Swain M V. J. Mater. Res., 1993, 8 (4): 830~839.
  • 3Hirakawa K, Hashizume K, Hayashi T. Brain and Nerve, 1981, 33 (10): 1057~1065.
  • 4Niparko J K, Altschuler R A, Xue X, et al. Ann Oto Rhinol Laryngl, 1989, 98: 965~970.
  • 5Shirakama H. Chem. Comm., 1977, 578.
  • 6Chiang C K, Druy M A, Gau A J, et al. J. Am. Chem. Soc., 1978, 100: 1013~1015.
  • 7Cheah K, Forsyth M, Truong V T. Syn. Met., 1998, 94: 215~219.
  • 8Schmidt C E, Shastri V R, Vacanti J P, et al. Proc. NatlAcad. Sci., U.S.A., 1997: 8948~8953.
  • 9Cui X Y, Hetke J F, Wiler J A, et al. Sens. Actuators A: Physical, 2001, 93: 8~18.
  • 10Buchko C J, Slattery M J, Martin D C. J. Mater. Res., 2000, 15: 231~242.

同被引文献19

  • 1方惠群,王美全,陈洪渊.微电极研究——吡咯在微电极上的聚合及膜的生长过程[J].化学学报,1995,53(8):789-795. 被引量:6
  • 2倪石磊,齐宏旭,鲍圣德,胡平,王波,张家涌,李良,张扬.组织工程支架在犬急性脊髓损伤修复中应用的初步研究[J].中国微侵袭神经外科杂志,2005,10(9):404-407. 被引量:11
  • 3BELKAS J S, SHOICHET M S, MIDHA R. Peripheral nerve regeneration through guidance tubes [J]. Neurol RES, 2004,26(2): 151-160.
  • 4ZELIKIN A N, LYNN D, FARHADI J, et al. Erodible conducting polymers for potential biomedical appylications [J].Angew Chem Int Ed Engl, 2002, 41(1): 141-144.
  • 5SCHMIDT C E, SHASTRI V R, VACANTI J P, et al. Stimulation of neurite outgrowth using an electrically conducting polymer [J]. Proc Natl Acad Sci U S A, 1997, 94(17): 8948-8953.
  • 6WONG J Y, LANGER R, INGBER D E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells [J]. Proc Natl Acad Sci USA,1994, 91(8): 3201-3204.
  • 7KAMALESH S, TAN P, WANG J, et al. Biocompatibility of electroactive polymers in tissues [J]. J Biomed Mater Res,2000, 52(3): 467-478.
  • 8HOBSON M I. Increased va scularisation enhances axonal regeneration within an acellular nerve conduit [J]. Ann R Coll Surg Engl, 2002, 84(1): 47-53.
  • 9XU X M, CHEN A, Guenard V, et al. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord[J]. J Neurocytol, 1997, 26(1): 1-16.
  • 10Iwata A, Browne K D, Pfister B J, et al. Long-term survival and outgrowth of mechanically engineered nervous tissue constructs implanted into spinal cord lesions [J]. Tissue Eng,2006, 12(1): 101-110.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部