期刊文献+

有惯性项的二元神经网络系统存在暂态混沌 被引量:1

Two neuron system with an inertial term to exhibit transient chaos
下载PDF
导出
摘要 发现了有惯性项的二元神经网络系统存在暂态混沌,并用相图及短期Lyapunov指数说明了此暂态混沌的存在。给出了理论证明和计算方法,其结果很容易扩展到高维系统。 A two-neuron system with an inertial term is shown to exhibit transient chaos. The transient chaos is confirmed by phase space plots , and Lyapunov exponents.
出处 《重庆邮电学院学报(自然科学版)》 2005年第3期372-375,共4页 Journal of Chongqing University of Posts and Telecommunications(Natural Sciences Edition)
基金 教育部科学技术研究重点项目(02130)
关键词 暂态混沌 LYAPUNOV指数 二元神经系统 transient chaos Lyapunov exponents two neuron system
  • 相关文献

参考文献12

  • 1HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[A]. Proc. National Academy of Sciences (USA)[C]. 1984,81,3088-3092.
  • 2SCHIEVE W C,BULSARA A R,DAVIS G M.Single effective neuron[J].Phys. Rev. 1991,A43:2613-2623.
  • 3HAKEN H. Synergetics[M]. Springer, Berlin,1977.
  • 4HAKEN H.Advanced Synergetics[M]. Springer, Berlin,1993.
  • 5WHEELER Diek W,SCHIEVE W C. Stability and chaos in an inertial two-neuron system[J]. Physica. D,1997,105:267-284.
  • 6DIECI Luca.Jacobian free computation of Lyapunov exponents[J].Journal of Dynamics and Differential Equations,2002,14(4):697-717.
  • 7ECKMANN J P, RUELLE D. Ergodic theory of chaos and strange attractors[J]. Rev.Modern Phys. 1985,57:617-656.
  • 8BENETTIN G,GALGANI L,GIORGILLI A,et al.Lyapunov exponents for smooth dynamical systems and for Hamiltonian systems;a method for computing all of them[J].Part 1: Theory, and Part2:Numerical Applicatioms.Meccanica,1980:15:9-20,21-30.
  • 9DRESSLER U.Symmetry property of the Lyapunov spectra of a class of dissipative dynamical systems with viscous damping[J]. Phys. Rev. 1998,A38(4):2103-2109.
  • 10GEIST K,PARLITZ U,LAUTERBORN W. Comparison of different methods for computing Lyapunov exponents[J].Prog. Theor. Phys.1990, 83:875-893.

二级参考文献15

  • 1HAO B, et al. Feature extraction for taste sensor signal processing by neural network[R]. Technical Report of IEICE, 1994.
  • 2AKIRA YOKOYAMA, HIDEKAZU UCHIDA, TERUAKI KATSUDE. Quantitative sampling analysis for a taste sensor[A]. Proceedings of 3rd International Conference Engineering Design and Automation Vol 3[C]. 1999.7-10.
  • 3SHEN Q, et al. A tutorial on pattern recognition[M]. Changsha: University of National Defense Science and Technology Press, 1991.
  • 4HUANG Feng-gang, et al. Pattern recognition[M]. Harbin: Harbin Engineering University Press, 1998.
  • 5LIU Z L, et al. Fuzzy logic and neural network[M]. Beijing: Beijing University of Aeronautics and Astronautics Publishing House, 1996.
  • 6HECHT-NIELSEN R. Theory of the backpropagation neural network[C]. International Joint Conference on Neural Networks[C]. New York: IEEE TAB Neural Network Committee, 1989,1: 593-606.
  • 7HOLLAND J H. Adaptation in natural and artificial system[D]. Ann Arbor: University of Michigan, 1975.
  • 8JOO Y H, HWANG H S, KIM K B, et al. Fuzzy system modeling by fuzzy partition and GA hybrid schemes[J]. Fuzzy Sets and Systems, 1997, 86(3):279-288.
  • 9LI W, et al. A neuro-fuzzy architecture for behavior-based control of a mobile robot in unknown environment[J]. Fuzzy Sets and Systems, 1997, 87(2):133-134.
  • 10DUNN J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3): 32-57.

共引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部