期刊文献+

The Maximum Jump Number of (0, 1)-Matrices of Order 2k - 2 with Fixed Row and Column Sum k

具有固定行列和k的阶为2k-2的(0,1)-矩阵的最大跳跃数(英文)
下载PDF
导出
摘要 In 1992, Brualdi and Jung first introduced the maximum jump number M(n, k), that is, the maximum number of the jumps of all (0, 1)-matrices of order n with k 1's in each row and column, and then gave a table about the values of M(n, k) when 1 ≤ k ≤ n ≤ 10. They also put forward several conjectures, including the conjecture M(2k - 2, k) = 3k - 4 + [k-2/2]. In this paper, we prove that b(A) ≥ 4 for every A ∈ A(2k - 2, k) if k ≥ 11, and find another counter-example to this conjecture . 1992年Brualdi与Jung首次引出了最大跳跃数M(n,k),即每行每列均含k个1的阶为n的(0,1)-矩阵的跳跃数的极大数,给出了满足条件1≤k ≤n ≤10的(0,1)-矩阵的最大跳跃数M(n,k)的一个表,并提出了几个猜想,其中包括猜想M(2k-2,k)=3k-4+[k-2/2].本文证明了当k≥11时,对每个A∈∧(2k-2,k)有b(A)≥4.还得到了该猜想的另一个反例.
作者 游林 王天明
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2005年第2期244-254,共11页 数学研究与评论(英文版)
基金 Hainan Natural Science Foundation of Hainan (10002)
关键词 (0 1)-matrices jump number stair number. (0,1)-矩阵 跳跃数 极大数 固定行列和
  • 相关文献

参考文献6

  • 1CHEIN M, HABIB M. The jump number ofdags and posets: An introduction [J]. Ann. Discrete Math., 1980,9: 189-194.
  • 2STEINER G, STEWART L. A linear time algorithm to find the jump number of 2-dimensional bipartite partial orders [J]. Order, 1987, 3(4): 359-367.
  • 3BRUALDI R A. Matrices of zeros and ones with fixed row and column sum vertor [J]. Linear Algebra Appl.,1980, 33: 159-231.
  • 4BR UALDI R A, JUNG H C. Maximum and mimmumjump number ofposets from matrices [J]. Linear Algebra Appl., 1992, 172: 261-282.
  • 5YOU LIN, WANG TIAN-MING. Counter-examples to the Conjecture M(2k, k + 1) = 3k - 1 + [k-1/2」 [J]. J.Math. Res. Exposition, 2002, 22(2): 194-196.
  • 6CHENG B, LIU B. Matrices of zeros and ones with the maximum jump number [J]. Linear Algebra Appl.,1998, 277: 83-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部