期刊文献+

Summarization based on physical features and logical structure of multi documents 被引量:2

下载PDF
导出
摘要 With the rapid development of the Internet, multi documents summarization is becoming a very hot research topic. In order to generate a summarization that can effectively characterize the original information from documents, this paper proposes a multi documents summarization approach based on the physical features and logical structure of the document set. This method firstly clusterssimilar sentences into several Logical Topics (LTs), and then orders these topics according to their physical features of multi documents. After that, sentences used for the summarization are extracted from these LTs, and finally the summarization is generated via certain sorting algorithms. Our experiments show that the information coverage rate of our method is 8.83% higher than those methods based solely on logical structures, and 14.31% higher than Top-N method.
出处 《High Technology Letters》 EI CAS 2005年第2期133-136,共4页 高技术通讯(英文版)
基金 国家高技术研究发展计划(863计划),国家自然科学基金
  • 相关文献

同被引文献19

  • 1Luhn H P. The Automatic Creation of Literature Abstracts[J]. IBM Journal of Research and Development, 1958 : 159-165.
  • 2Edmundson W. Automatic Abstracting and Indexing:Survey and Recommendations[J]. Communication of the ACM, 1961,4 (5): 226-234.
  • 3Edmundson W. New methods in automatic abstracting [J].Journal of the Association for Computing Machinery, 1996,16(2): 264-285.
  • 4Pollock J J, Zamora A. Automatic Abstracting Research at Chemical Abstracts Service[J]. Journal of Chemical Information and Computer Sciences, 1975,15(4) : 226-232.
  • 5Paice C D. The Automatic Generation of Literature Abstracts: An Approach Based on the Identification of Self-indicating Phrases[J]. Information Retrieval Research.
  • 6Schank C, Abelson P. Scripts, Plans, Goals, and Understanding: An Inquiry into Human Knowledge Structures[M]. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 1977.
  • 7Lisa F R, Jacobs P S. SCISOR.. Extracting Information Online News[J]. Communication of the ACM, 1990,33 (11): 88-97.
  • 8Blair-Goldensohn S. Columbia University at DUC 2004[C]//DUC 2004. 2004.
  • 9Gunes E, Radev D R. LexRank: Graph-based Centrality as Salience in Text Summarization [J]. Journal of Artificial Intelligence Research, 2004,22.
  • 10Lin Chin-Yew, Hovy E H. Automatic Evaluation of Summaries Using N-gram Co-oeeurrence Statistics[C]//Proeeeding of 2003 Language Technology Conference (HLT-NAACL 2003). Canada, 2003.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部