期刊文献+

产品需求预测的演化神经网络算法MLPES 被引量:1

Forecast of Manufacturer's Product Demand Based on MLPES Algorithm
下载PDF
导出
摘要 在需求拉动型的供应链中,需求成为供应链的起点和动力源泉。由于制造商在供应链中的特殊地位,制造商成为供应链由需求驱动变为预测驱动的断耦点,以制造商为核心进行准确的需求预测可以在一定程度上减少需求不确定性的影响。本文在多层感知器的框架上,提出了基于演化策略的神经网络预测方法MLPES,改进了在多层感知器中普遍采用的BP算法,并设计了学习算法的流程,通过反复测试确定了模型的参数,最后对预测结果进行了分析。 Product demand is the starting point and motivation in the demand-pulled supply chains. Because of its special position in the supply chain, the manufacturer becomes the decoupling point in the change of supply chain from demand driven to forecast driven. Accurate manufacturer-centric demand forecast can to some extent reduce the affect of the uncertainty of demand. Furthermore, on the basis of the multi layer perceptron model, a neural network forecasting algorithm (Multi Layer Perceptron based on Evolution Strategy, MLPES) combining an evolution strategy is proposed which improves the commonly used ones, back-propagation (BP) algorithms. The process of the learning algorithm and the model parameters obtained by several times of calculating are also presented. Finally, the forecasting result is analyzed and compared with that of a BP algorithm.
作者 王瑛
出处 《运筹与管理》 CSCD 2005年第3期5-9,59,共6页 Operations Research and Management Science
基金 国家自然科学基金资助项目(70028102)
关键词 企业管理 供应链管理 需求预测 演化策略 断耦点 多层感知器 enterprise management supply chain management demand forecasting evolution strategy decoupling point multi layer perceptron (MLP)
  • 相关文献

参考文献13

  • 1Newbold P, Bos T. On exponential smoothing and the assumption of deterministic trend plus white noise data-generating models[J]. International Journal of Forecasting,1989, 5(4): 523-527.
  • 2Gardner E S, McKenzie E. Forecasting trends in time series[J]. Management Science,1985,31(10): 1237-1246
  • 3Charles W, Chase Jr. The role of the demand planner in supply chain management[J]. The Journal of Business Forecasting Methods & Systems,1998,17(3): 23-25.
  • 4Rao R,Parikh J K. Forecast and analysis of demand for petroleum products in India[J]. Energy Policy,1996,24(6):583-592.
  • 5Parigi G,Schiltzer G. Predicting consumption of Italian households by means of survey indicators[J]. International Journal of Forecasting,1997,13(2):197-209.
  • 6Tridimas G. The analysis of consumer demand in Greece. Model selection and dynamic specification[J]. Economic Modelling,2000,17(4): 455-471.
  • 7Jeong B,Jung H S,Park N K. A computerized causal forecasting system using genetic algorithms in supply chain management[J]. The Journal of Systems and Software, 2002,60(3): 223-237.
  • 8Naylor Ben J, Naim Mohamed M, Berry Danny. Leagility: Integrating the lean and agile manufacturing paradigms in the total supply chain[J]. International Journal Production Economics, 1999,62(1-2): 107-118.
  • 9Slats Piet A, Bhola Bis, Evers Joseph J M, Dijkhuizen Gert. Logistics chain modeling[J]. European Journal of Operations Research,1995,87(1): 1-20.
  • 10van der Vlist Piet, Hoppenbrouwers Jurgen J E M, Hegge Herman M H. Extending the enterprise through multi-level supply control[J]. International Journal of Production Economics, 1997, 53(1): 35-42.

同被引文献1

  • 1Martin Christopher,Denis R.Towill.Supply chain migration from lean and functional to agile and customized.[M]Supply Chain Management,2003,15(4):206~313

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部