期刊文献+

Degasperis-Procesi方程的一类新的行波解 被引量:2

New traveling wave solution for Degasperis-Procesi equation
下载PDF
导出
摘要 利用齐次平衡法,研究了非线性偏微分Degasperis-Procesi方程的行波解.根据DegasperisProcesi方程所对应的行波系统,利用Riccati方程有更多新解的特点,借助Mathematica软件,构造了Degasperis-Procesi方程的一些具有正切函数形式的多孤子解和三角周期解,用数值模拟的方法给出了部分多孤子解和三角周期解的图形,从而表明了解的几何特征.这种方法也适用于其他的非线性方程. Homogeneous balance method is employed to investigate the traveling wave solution for the Degasperis-Procesi equation. For the traveling wave system corresponding to the Degasperis-Procesi equation, by taking full advantage of the Riccati equation which has more new solutions and by using the software of Mathematica, homogeneous balance method is used to construct more new multiple soliton and triangle periodic solutions with tanh function form for the Degasperis-Procesi equation. Numerical simulation is used to give the graph of some solutions, and to show the geometric properties of solution.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2005年第3期231-234,共4页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(10071033) 江苏省自然科学基金资助项目(BK2002003)
关键词 非线性偏微分方程 Degasperis—Procesi方程 齐次平衡法 行波解 孤立波解 nonlinear partial differential equation Degasperis-Procesi equation homogeneous balance method traveling wave solution solition solutions
  • 相关文献

参考文献13

  • 1宋秀迎,田立新.广义Camassa-Holm方程的尖峰孤立子及其耗散下的行波解[J].江苏大学学报(自然科学版),2003,24(1):35-39. 被引量:15
  • 2田立新,邓晓燕.MKdV-Burgers方程的Neumann边界控制[J].江苏大学学报(自然科学版),2003,24(1):23-25. 被引量:7
  • 3Degasperis A, Procesi M. Asymptotic integrability[A].In: Symmetry and Perturbation Theory[C]. Singapore:World Scientific, 1999.
  • 4Cammassa R, Holm D. An integrable shallow water equation with peaked solitons[J]. Phys Rev Lett, 1993,71 (11): 1661 - 1664.
  • 5DegasperisA, HolmDD, HoneANW. A new integrable equation with peakon solitons[J]. Theor Math Phys, 2002,133(4) :1461 - 1472.
  • 6Degasperis A, Holm D D, Hone A N W. Integrable and non-integrable equation with peakons[J]. Nonlinear Physics: Theroy and Experiment, 2003,11 (1): 37 - 43.
  • 7Hone A N W, Wang Jingping. Prolongation algebras and Hamiltonian operators for peakon equations[J]. Inverse Problem, 2003,19(1): 129 - 145.
  • 8Hans Lundmark, Jacek Szmigielski. Multi-peakon solutions of the Degasperis-Procesi equation[J]. Inverse Problems, 2003, 19(3) :1241 - 1245.
  • 9Zhou Yong. Blow-up phenomenon for the integrable Degasper-Procesi equation[J]. Physics Letters A, 2004,328(2) :157 - 162.
  • 10Vakhnenko V O, Parkes E J. Periodic and solitary-wave solutions of the Degasperis-Procesi equation[J]. Chaos Solutions & Fractals, 2004,20 (5): 1059 - 1073.

二级参考文献3

共引文献18

同被引文献12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部