期刊文献+

序约束下ARCH模型的最小二乘估计 被引量:4

Least Square Estimation about the ARCH Model under Ordered Restriction
下载PDF
导出
摘要 研究序约束条件下自回归条件异方差(ARCH)模型的统计推断. 给出ARCH(q)模型中非负参数(α0,α1,α2,…,αq)的一种最小二乘估计的准则函数, 证明了由此得到参数估计的强相合性. 而且通过讨论在序约束(α1≥α2≥…≥αq)下估计的准确形式及其渐近性, 得到了检验统计量的形式, 从而解决了在参数空间有序约束条件下的假设检验问题. This paper deals with the statistical inference of an autoregressive conditional heteroscedasticity (ARCH) model under restriction. We gave a criteria function to compute a least squares estimation for the nonnegative parameters (α_0,α_1,α_2,…,α_q) of the ARCH model, and showed the strong consistency of the estimation . By discussing the exact expression and the asymptotic normality of the estimation under ordered restriction (α_1≥α_2≥…≥α_q), we obtained the form of the test statistical quantity, then solved the testing problem with the parameter space under ordered restriction.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第3期287-294,共8页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号: 10271049).
关键词 最小二乘 强相和性 渐近正态性 序约束 least squares estimator strong consistency asymptotic normality property ordered restriction
  • 相关文献

参考文献8

  • 1Engle R F.Autoregressive Conditional Heteroskedesticity with Estimates of the Variance of United Kingdom Inflation [J].Econometrica,1982,50:987-1007.
  • 2Engle R F,Kraft D F.Multiperiod Forecast Error Variances of Inflation Estimated from ARCH Models [C].In:Zllner A,ed.Proceedings of the ASA-Census-NBER Conference on Applied Time Series Analysis.Washington:Bureau of the Census,1983:293-302.
  • 3黄晓薇,王德辉,宋立新.高维ARCH(q)模型噪声密度函数的估计[J].吉林大学学报(理学版),2004,42(2):151-157. 被引量:4
  • 4安鸿志 陈敏.非线性时间序列分析 [M].上海:上海科学技术出版社,1988..
  • 5WANG De-hui,SONG Li-xin,SHI Ning-zhong.Estimation and Test for the Parameters of ARCH(q) Model under Ordered Restriction [J].Journal of Time Series Analysis,2004,25:1-17.
  • 6Bose A,Mukherjee K.Estimating the ARCH Parameters by Solving Linear Equations [J].Journal of Time Series Analysis,2003,24:127-136.
  • 7Billingsley P.Convergence of Probability Measures [M].New York:Wiley,1968.
  • 8Robertson T,Wright F T,Dykstra R L.Order Restricted Statistical Inference [M].New York:Wiley,1988.

二级参考文献8

  • 1LING Shi-qing, Li W K. On fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity [J]. Journal of the American Statistical Association, 1997, 92: 1184-1194.
  • 2Prakasa Rao B L S. Nonparametric functional estimation [M]. Orlando, Florida: Academic Press, 1983.
  • 3Engle R F. Autoregressive conditional heteroscedasticity with estimates if variance of U K Inflation [J]. Econometrica, 1985, 50: 987-1008.
  • 4Bollerslev T. Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH approach [J]. Review of Economics and Statistics, 1990, 72: 498-505.
  • 5Ling S, McAleer M. Asymptotic theory for a vector ARMA-GARCH model [J]. Econometric Theory, 2003, 19: 280-310.
  • 6Philippe J. The new benchmark for controlling derivatives risk [M]. New York: The McGraw-Hill Companies Inc, 1997.
  • 7Feike C, Chris A, Klaassen J. Efficient estimation in semiparametric GARCH models [J]. Journal of Econometrics, 1997, 81: 193-221.
  • 8Peter H, PENG Liang, YAO Qi-wei. Prediction and nonparametric estimation for time series with heavy tails [J]. Journal of Time Series Analysis, 2002, 3: 313-331.

共引文献3

同被引文献35

  • 1王建新,石汝娟.ARCH(0,p)模型的参数估计[J].山东科技大学学报(自然科学版),2005,24(2):91-93. 被引量:1
  • 2宋海燕,宋立新.Pitman准则下带有半序约束的最大似然估计的优良性[J].吉林大学学报(理学版),2006,44(2):143-149. 被引量:3
  • 3李凡群.熵损失下的Pasreto分布参数的Bayes估计[J].阜阳师范学院学报(自然科学版),2007,24(1):9-11. 被引量:11
  • 4Barlow R E, Bartholomew D J, eral. Statistical Inference [ M]. New York Wiley, 1972.
  • 5Robertson T, W right F T, Dykstra R L. Oradered Restricted Statistical Inference[ M]. New York Wiley, 1988.
  • 6Lee C I C. The Quadratic Loss of Isotonic Regressiox under Normality[J]. Ann Statist, 1981,9(3) :686- 688.
  • 7Kaura, singh H. On the Estination of Ordered Meals of Two Exponential[J]. Ann Inst Statist Math, 1991, 43:347 - 356.
  • 8Vyayasnee G, Singh H. Mixed Estinator of Two Ordered Expontial Means[J]. J Statistical Planning and Inference, 1993, 35:47 - 53.
  • 9KatzM W. Estimating Ordered Probabilities[J].Ann Math Statist, 1963,34: 967 - 972.
  • 10Kumar S, Sharma D. Sinultaneous Estination of Ordered Parameters[J]. Comm Statist Theory and Methods, 1988, 17:4315 - 4336.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部