期刊文献+

Au纳米晶在单晶硅(110)表面上的分形生长 被引量:3

Fractal Growth of Au Nano-crystalline on Silicon Surface
下载PDF
导出
摘要 利用水溶液法制备了Au纳米粒子水溶胶, 透射电镜观察, Au纳米粒子的平均粒径为29nm. 将此溶胶滴至干净的单晶硅(110)表面上, Au纳米粒子自组装形成分形结构. 通过控制温度, 所得的分形结构表现出不同的形貌特点. 利用光学显微镜观察Au纳米粒子的聚集分形生长过程, 用原子力显微镜对分形结构的表面形貌进行表征, 讨论了分形生长机理. Colloidal Au nano-crystalline in aqueous phase was synthesized and analyzed by means of TEM (about 29 nm). When several drops of this solution were dropped onto a clean silicon wafer(110), a snowflake or dendrite fractal structure formed with water vaporized under natural circumstances. Such structures were investigated by virtue of optical microscope and AFM. The mechanisms of Au nano-crystalline fractal growth on silicon surface were discussed.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第3期377-379,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号: 20374054)
关键词 Au纳米晶 单晶硅表面 分形 Au nano-crystalline silicon surface fractal
  • 相关文献

参考文献9

  • 1朱梓华,朱涛,刘忠范.大粒径单分散金纳米粒子的水相合成[J].物理化学学报,1999,15(11):966-970. 被引量:31
  • 2李后强.分形概念及其在化学中的应用[J].化学通报,1988,(7):6-11.
  • 3Wang S Z,Xin H W.Fractal and Dendritic Growth of Metallic Ag Aggregated from Different Kinds of γ-Irradiated Solutions [J].J Phys Chem B,2000,104(24):5681-5685.
  • 4Laurens K,Richard E P.Influence of Island Mobility on Island Size Distributions in Surface Growth [J].Physical Review B,1996,53(12):R7646-7649.
  • 5徐铁军,张程祥.具有分形结构掺入物的二维复合材料三阶光学非线性性质的计算[J].吉林大学学报(理学版),2002,40(3):276-279. 被引量:1
  • 6Witten T A Jr,Sander L M.Diffusion-limited Aggregation,a Kinetic Critical Phenomenon [J].Phys Rev Lett,1981,47(19):1400-1403.
  • 7Meakin P.Diffusion-controlled Cluster Formation in 2-6-Dimensional Space [J].Phys Rev,1983,A27:1495-1507.
  • 8Meakin P.Formation of Fractal Cluster and Networks by Irreversible Diffusion-limited Aggregation [J].Phys Rev Lett,1983,51:1119-1122.
  • 9Kolb M,Botet R,Jullien R.Scaling of Kinetically Growing Clusters [J].Phys Rev Lett,1983,51:1123-1126.

二级参考文献8

  • 1[1]Shalaev V M. Electromagnetic Properties of Small-particle Composites [J]. Phys Reports, 1996, 272: 61~137.
  • 2[2]Sarychev A K, Shalaev V M. Electromagnetic Field Fluctuations and Nonlinearities in Metal-electric Composites [J]. Phys Reports, 2000, 335: 275~371.
  • 3[3]Bergman D J, Stroud D. Solid State Physics [M]. Eherenreich H, Turnbull D, eds. New York: Academic Press, 1992. 46.
  • 4[4]ZHANG Cheng-xiang, YANG Bei-feng, WU Xu-hong, et al. Calculation of the Effective Dielectric Function of Composites with Periodic Geometry [J]. Phsica B, 2000, 293: 16~32.
  • 5[5]WU Xu-hong, ZHANG Cheng-xiang, WU Shao-zeng. The Nonlinear Susceptibility, of Composites with Periodic Geometry [J]. Solid State Commun, 1996, 97: 997~1001.
  • 6[6]ZHANG Cheng-xiang, WU Xu-hong, WU Shao-zeng, et al. Nonlinear Susceptibility of Periodic Composites with Shell Structure [J]. Phys Rev, 1996, B54: 16349~16352.
  • 7[7]Stroud D, Wood V E. Decoupling Approximation for the Nonlinear-optical Response of Composite Media [J]. J Opt Soc Am, 1989, B6: 778~786.
  • 8王健,物理化学学报,1999年,15卷,476页

共引文献30

同被引文献40

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部