期刊文献+

责任准备金的最优投资计划 被引量:2

The Best Investment Plans of Reserve
原文传递
导出
摘要  给出两种责任准备金的投资模型—单纯存款模型和既可存款又可购买国债模型,都使原本无收益的保险基金产生了经济效益.并从中找到一个最优的投资方式—既存款又购买国债.最后用一个简单的实例模拟,取得良好的效果.期望本模型为我国的保险基金提供可以借鉴的方法. In this paper, two investment models of reserve are given: one model is of only deposit and another is of either deposit or buying national debt. These models can make the reserve which has no economic profit bring some profit. From the models, a method which is the best for investment is found; it can be either deposit or buying national debt. A simple example is used with a satisfactory result is the paper. Hoping the models can offer a reference way to our national insurance fund.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第6期76-86,共11页 Systems Engineering-Theory & Practice
基金 复旦 瑞士再保险研究基金(2001990101) 新疆大学科学基金(2003320106)
关键词 精算数学 责任准备金 线性规划 收益率 actuarial mathematics net premium reserve line programming rate of return
  • 相关文献

参考文献5

  • 1迈克.弗里曼.通货紧缩市场下的偿付能力管理[A]..中国保险监管与精算务实[M].北京:中国人民大学出版社,2003.36-48.
  • 2基金计划2001B[J].数学的实践与认识,2002,(1).
  • 3NL鲍尔斯 余跃年 郑韫瑜 译.精算数学[M].上海:上海科学出版社,1998..
  • 4SG凯利森著 尚汉冀 译.利息理论[M].上海:上海科学出版社,1998..
  • 5吴黎军.人寿保险中的最优缴费模型[J].数学的实践与认识,2003,33(11):6-8. 被引量:3

二级参考文献3

  • 1NL鲍尔斯(余跃年等译).精算数学[M].上海科技出版社,1998..
  • 2卡尔 H博尔奇(庹国柱等译).保险经济学[M].商务印书馆,1999..
  • 3将中一(美).动态最优化基础[M].商务印书馆,1999..

共引文献2

同被引文献12

  • 1林建华,龙江,冯敬海.随机利率下的净保费责任准备金[J].大连理工大学学报,2004,44(6):928-930. 被引量:6
  • 2何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 3王波.线性规划在寿险精算中的应用[J].数学的实践与认识,2006,36(11):48-53. 被引量:2
  • 4迈克·弗里曼.中国保险监管与精算务实[M].北京:中国人民大学出版社,2003:36-48.
  • 5Beekman J A, Fuelling C P. Extra randomness in certain annuity models[J]. Insurance: Mathematics and Economics, 1991,10:275--287.
  • 6De Sehepper A, De Vylder F, Goovaerts M, et al. Interest randomness in annuities certain[J]. Insurance:Mathematics and Economies, 1992,11: 271-- 281.
  • 7De Schepper A, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance: Mathematics and Economics, 1992,11: 283-- 299.
  • 8De Schepper A, Goovaerts M, Delbaen F. The Laplace transform of annuities certain with exponential time distribution[J]. Insurance: Mathematics and Economics, 1992, 11:291--294.
  • 9Vanneste M, Goovaerts M J, De Schepper A, et al. A straight forward analytical calculation of the distribution of an annuity certain with stochastic interest rate[J]. Insurance: Mathematics and Economics, 1997,20 : 35--41.
  • 10Perry D, Stadje W. Function Space integration for annuities [J]. Insurance: Mathematics and Economics, 2001, 29: 73--82.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部