期刊文献+

量子轮廓模型 被引量:1

Quantum contour model
下载PDF
导出
摘要 在分析了可变形模型(Deformable models or snakes)的物理背景的基础上,将量子力学中关于粒子运动的观念及规律引入到目标轮廓的提取中,通过估计粒子从一点到达另一点的概率(相对概率),得到了一种新的目标轮廓提取方法-量子轮廓模型,并对提取的轮廓进行了光滑处理。实验表明,我们的方法有较好的效果、较快的速度。 Physical background of deformable model is described. Then, an approach of finding the contour of an object based on quantum mechanics is obtained by introducing the point of view of the quantum mechanical law of motion of a particle into extraction of object contour and estimating the probability (relative probability) that a particle goes from a point to another point. Next, Smoothing of the extracted contour is considered. Finally, this method is applied to both simulated images and real medical images.
出处 《量子电子学报》 CAS CSCD 北大核心 2005年第3期354-360,共7页 Chinese Journal of Quantum Electronics
基金 湖北省自然科学基金(2004ABA016)湖北省教育厅科学技术研究项目基金(2004D004)资助
关键词 数字图像处理 能量最小化 可变形轮廓 量子力学 量子轮廓 digital image processing energy minimization deformable contour quantum mechanics quantum contour
  • 相关文献

参考文献7

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active contour models [J]. Int. J. Comp. Vis., 1988, 1(4): 321-331.
  • 2Cohen L D, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images [J].IEEE Trans. on Pattern Anal. Machine Intell., 1993, 15: 1131-1147.
  • 3Xu C, Prince J L. Snakes, shapes, and gradient vector flow [J]. IEEE T. Imag. Proc., 1998, 7(3): 359-369.
  • 4Feynman R P, Hibbs A R. Quantum Mechanics and Path Integrals [M]. New York: McGraw-Hill,Inc., 1965.
  • 5Thornber K K, Williams L R. Analytic solution of stochastic completion fields [J]. IEEE International Symposium on Computer Vision, Coral Gables, 1995, FL, USA, 617-622.
  • 6WangRuixi.量子力学 [M].Beijing: Higher Education Publisher,1992.(inChinese).
  • 7Xu Chenyang, Prince J L. Global optimality of gradient vector flow [C] // 2000 Conference on Information Sciences and Systems, Princeton University, 2000. 15-17.

同被引文献16

  • 1娄联堂,丁明跃,周成平.基于量子力学目标轮廓提取方法[J].计算机工程与应用,2005,41(3):94-97. 被引量:3
  • 2谢可夫,罗安.量子启发数学形态学的研究[J].电子学报,2005,33(2):284-287. 被引量:19
  • 3谢可夫,罗安,周心一.量子衍生形态学图像边缘检测方法[J].计算机工程与应用,2007,43(11):87-89. 被引量:7
  • 4SERRA J. Introduction to mathematical morphology [ J ]. Computer Vision, Graphics and Image Processing, 1986,35 ( 1 ) : 283- 305.
  • 5BAI M R. A new approach for border extraction using morphological methods[ J]. International Journal of Engineering Science and Technology,2010,2( 8 ) :3832- 3837.
  • 6ELDARY C, OPPENHEIM A V. Quantum signal processing [ J ]. IEEE Trans on Signal Processing ,2002,19 (6) : 12- 32.
  • 7TSENG C C, HWANG T M. Quanttun digital image processing algorithms[ C]//Proc of 16th IPPR Conference on Computer Vision, Graphics and hnage Processing. 2003:827-834.
  • 8HANK H, KIM J H. Quantum-inspilred evolutionary algorithm for a class of combinatorial optimization [ J ]. IEEE Trans on Evolutionary Computation,2002,6(6) :580-593.
  • 9PURUSHOTHAMAN G, KARAYIANN1S N B. Quantum neural networks(QNNs) : inherently fuzzy feedforward neural networks [ J ]. IEEE Trans on Neural Networks, 1997,8(3) :679-693.
  • 10郭骏,潘申,胡小建.基于灰度形态学的烟叶图像边缘检测[J].计算机工程,2007,33(21):163-165. 被引量:20

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部