期刊文献+

基于人工神经网络的联合收割机变速箱计算机辅助设计

Computer aided design of combine gearbox using artificial neural networks
下载PDF
导出
摘要 针对自走式联合收割机变速箱优化设计中存在计算量大、图表多等问题,提出了一种新的神经网络学习算法,相对于其他学习算法,该算法侧重于网络参数的调整,通过对样本集的模糊推理、调整和分类学习来实现自适应的神经网络学习。通过BP网络的学习和训练,采用单输入双输出的1-8-2结构、1-6-2结构、1-4-2结构进行训练,从实际的应用效果来看,选择1-6-2的BP网络结构作为最终的神经网络形式,网络的识别精度是非常高的。结果表明,该算法能运用神经网络对联合收割机变速箱进行了设计研究,建立数学描述形式,分析了通过神经网络来实现变速箱设计模型构建的方法。研究表明,应用神经网络构建的模型能够减少系统的分析次数,并能够很大程度的提高模型的精度,满足计算要求,最终在设计空间内寻找出较好的设计方案。 The optimum design of the self-propelled combine gearbox showed some deficiencies such as too much calculation and too many charts. A new algorithm was proposed which improves the training of neural networks. Different from previous approaches, this new approach focuses on the samples, emphasizes particularly on parameter adjustment of networks. Via fuzzy deduction, adjustment of the samples and classified training, a better self-adaptive training performance was achieved. After learning and training of BP Artificial Neural Networks (ANN), single-input and double-output structures in the form of 1-8-2, 1-6-2, and 1-4-2 were adopted. According to practical effectiveness, 1-6-2 structure with high identification precision as the final BP ANN form is selected, and the identification precision of BP ANN is perfectly high. This approach based on artificial neural networks to design the combine gearbox, gave a mathematical description. The method establishing gearbox design model by neural networks was analyzed. Study shows that the neural networks model can reduce the frequency of system analysis, improve the precision of the model to a great degree, meet the requirements of calculation, and then find out an improved scheme from design space.
作者 王金武
出处 《农业工程学报》 EI CAS CSCD 北大核心 2005年第6期68-70,共3页 Transactions of the Chinese Society of Agricultural Engineering
基金 黑龙江省博士后科研启动基金项目
关键词 联合收割机 人工神经网络 变速箱 计算机辅助设计 combine artificial neural networks gearbox computer aided design
  • 相关文献

参考文献16

二级参考文献19

  • 1陈世福 陈兆乾.人工智能与知识工程[M].南京:南京大学出版社,1998..
  • 2孔东 史海滨.水盐联合胁迫对油葵影响的初步试验研究[A]..农业水土工程科学[C].内蒙古教育出版社,2001.169-174.
  • 3[5]Martin T Hagan, Howard B Demuth, Mark Beale. Neural Network Design[M]. New York PWS Publishing Company,2002.
  • 4孔东 史海滨.水盐联合胁迫对油葵影响的初步试验研究.农业水土工程科学内蒙古教育出版社,2001,:169-174.
  • 5屈忠义 陈亚新 史海滨 等.一个试验区区域性土壤水盐关系及特征分析[A]..第二届农业水土工程学术年会论文集:农业水土工程科学[C].内蒙古教育出版社,2001.346~351.
  • 6王永骥 涂健.神经元网络控制[M].北京:机械工业出版社,1999..
  • 7Paulin Coulibaly, Francois Anctil, Ramon Aravena,Etc. Artificial Neural Network Modeling of Water Table Depth Flunctions[J].WRR, 2001,37(4): 885 - 896.
  • 8宋松柏,吕宏兴,王双银.土壤水分预报的人工神经网络模型[A].农业水土工程科学[C].呼和浩特:内蒙古教育出版社,2001.249-252.
  • 9张星昌.前馈神经网络的新学习算法研究及其应用[J].控制与决策,1997,12(3):213-216. 被引量:24
  • 10刘国东,丁晶.BP 网络用于水文预测的几个问题探讨[J].水利学报,1999,30(1):65-70. 被引量:117

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部