期刊文献+

混合非完整系统问题 被引量:1

ON PROBLEM OF HYDRIC NONHOLONOMIC SYSTEMS
下载PDF
导出
摘要 研究一类混合非完整系统的运动.它可分为3个阶段:第1阶段为完整系统的连续运动,第2阶段为冲击运动,第3阶段为非完整系统的连续运动.后一阶段的初始条件由前一阶段的运动终了条件确定.举例说明结果的应用. The intent of this paper is to study the motion of a kind of hydric nonholonomic systems.The motions of the system can be divided into three stages.The first stage is the continuous motion of a holonomic system.The second stage is an impulse motion.The third stage is the continuous motion of a nonholonomic system.The initial conditions of the last stage are detemined by the final condition of the preceding stage.An example is given to illustrate the application of the result.
作者 梅凤翔
出处 《动力学与控制学报》 2005年第2期22-24,共3页 Journal of Dynamics and Control
基金 国家自然科学基金(10272021) 高等学校博士点专项基金(20040007022)资助项目~~
关键词 非完整系统 混合 连续运动 冲击运动 初始条件 一阶 holonomic system,nonholonomic system,impulse motion,hydric nonholonomic system
  • 相关文献

参考文献6

  • 1[1]Whittaker ET.A treatise on the analytical dynamics of particles and rigid bodies,4th ed,Cambridge:Cambridge Univ Press,1959
  • 2[2]Rosenberg RM.Analytical dynamics.New York:Plenum Press,1977
  • 3[3]Neimark J,Fufaev N.Dynamics of nonholonomic systems.Providence RI:AMS,1972
  • 4[5]Papastavridis JG.Analytical mechanics.New York:Oxford Univ Press,2002
  • 5[6]Cortés J.Geometric,control and numerical aspects of nonholonomic systems.Berlin:Springer,2002
  • 6[8]Zegzhda SA,Soltahanov Sh H,Yushkov MP.Equations of motion of nonholonomic systems and variational principles of mechanics(in Russian).S-Peterburg:S-Peterburg Univ Press,2002

同被引文献8

  • 1郭永新,赵喆,刘世兴,王勇,朱娜,韩晓静.非完整系统Chetaev动力学和vakonomic动力学的等价条件[J].物理学报,2006,55(8):3838-3844. 被引量:11
  • 2梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985..
  • 3Appell P. Trait6 de m6canique rationnelle. Tome Ⅱ, Sixieme Edition. Paris : Gauthier-Villars, 1953.
  • 4Whittaker E T. A treatise on the analytical dynamics of particles and rigid bodies. Forth Edition. Cambridge: Cambridge Univ- Press, 1952.
  • 5Hamel G. Theoretische Mechanik, Berlin : Springer-Verlag, 1949.
  • 6АурьеАи. Аналитическая механика. Москва: ТИФМЛ,1961.
  • 7Rosen, Edelstein. Investigation of a new formulation of the Lagrange method for contraind dynamic systems. ASME Appl Mech, 1997,64 : 116 - 122.
  • 8梅凤翔.关于经典Appell-Hamel例──分析力学札记之九[J].力学与实践,2002,24(1):59-61. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部