期刊文献+

具有分布反馈和边界反馈的非均质Timoshenko梁的指数镇定性

Exponential Stabilization of Nonuniform Timoshenko Beamwith a Locally Distributed Feedback and a Boundary One
原文传递
导出
摘要 讨论具有分布反馈控制和边界反馈控制的非均质Timoshenko梁的指数镇定问题.首先利用已有的关于线性分布参数系统的渐进稳定性判据,证明所论梁系统的能量可仅由一个分布反馈控制指数镇定.进而利用频域分片乘子方法,在所论梁系统同时具有分布反馈控制和边界反馈控制的条件下,证明其相应的闭环系统能量指数稳定. The stabilization problem of a nonuniform Timoshenko beam system with a locally distributed feedback control and a boundary one is studied. First, based on the published criterion for the asymptotic stability of the related distributed system, we prove the asymptotic stability of the energy corresponding to the closed loop system with only one distributed feedback control. Then, by virtue of frequency domain multiplier method, we prove that the closed loop system with both a locally distributed feedback control and a boundary one is of exponential decay.
作者 万丽 阎庆旭
出处 《数学的实践与认识》 CSCD 北大核心 2005年第5期202-208,共7页 Mathematics in Practice and Theory
基金 中国地质大学 (北京 )校内基金资助 (A61 0 3 3 )
关键词 非均质Timoshenko梁 分布反馈 镇定性 边界反馈控制 分布参数系统 稳定性判据 镇定问题 乘子方法 指数镇定 指数稳定 系统能量 证明 locally distributed feedback control boundary feedback control timoshenko beam C 0 semigroups exponential stability multiplier method
  • 相关文献

参考文献12

  • 1Kim J U, Renardy Y. Boundary control of the Timoshenko beam[J]. SIAM J Control & Optimization, 1987, 25:1417-1429.
  • 2Timoshenko S. Vibration Problems in Engineering[M]. Van Nostand, New York, 1955.
  • 3Morgul. Boundary control of a Timoshenko beam attached to a rigid body: planar motion[J]. Int J Control, 1991,54:761-763.
  • 4Shi D H, Hou S H, Feng D X. Feedback stabilization of a Timoshenko beam with an endmass[J]. Iht J Control,1998, 69: 285-300.
  • 5Shi D H, Feng D X. Exponential decay of Timoshenko beam with locally distributed feedback[J]. Proc of the 1999 IFAC World Congress, Beijing, Vol. F, 158-162.
  • 6Shi D H, Feng D X. Optimal energy decay rate of Timoshenko beam with distributed damping[J]. ANZIAM Juornal, 2002, 44:205-220.
  • 7Abdelaziz Soufyane. Stabilisation de la poutre de timoshenko[J]. C R Acad Sci Paris, t. 328, Serie 1, 1999.731-734.
  • 8Liu K, Liu Z. Boundary stabilization of a nonhomogeneous beam with rotatory inertia at the tip[J]. Journal of Computational and Applied mathematics, 2000, 114: 1-10.
  • 9Huang F L. On the asymptotical stability of linear dynamical systems in general Banach spaces [J]. Chinese Science Bulletin, 1983, 28(10): 584-586.
  • 10Huang F L. Characteristic condition for exponential stability of linear dynamical systems in Hilbert spaces[J].Chinese Ann of Diff Eqs, 1985, 1: 43-56.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部