期刊文献+

含奇异项的退缩抛物型方程解的猝灭现象

Quenching for singular and degenerate parabolic equation
下载PDF
导出
摘要 考虑含奇异项的退缩抛物型方程的初边值问题,给出了解的局部存在性与惟一性.当区域适当大时,即当所考虑区域上的Laplace算子在Dirichlet边界条件下的第一特征值小于1时,对于奇异项的两种不同情形,分别证明解会在有限时刻发生猝灭现象. <Abstrcat>A class singular and degenerate parabolic equation is considered. The local existence and uniqueness are proved. Moreover, in two different singular cases the solution will quench in a finite time on an adequate large region on which the first eigenvalue of Laplace operator with Dirichlet boundary conditions is smaller than 1.
作者 孙仁斌
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 2005年第2期154-156,共3页 Journal of Central China Normal University:Natural Sciences
基金 国家民委重点科研基金资助项目(MZY02014).
关键词 奇异项 退缩抛物型方程 局部解 猝灭现象 singular degenerate parabolic equation local solution quench
  • 相关文献

参考文献6

  • 1Kawarada H. On solutions of initial-boundary value problem for ut=uxx+1/(1-u)[J]. Publ Res Inst Math Sci, 1975,10:729~736.
  • 2Chang C Y,Chen C S. A numerical method for semilinear singular parabolic quenching problems[J]. Quart Appl Math, 1989,47:45~57.
  • 3Deng C K, Levine H A. On the blow-up of ut at quenching[J]. Proc Amer Math Soc, 1989,106: 1 045~1 056.
  • 4Guo J S. On the quenching behavior of the solution of a semilinear parabolic equation[J]. J Math Anal Appl, 1990,151:57~79.
  • 5Dai Q Y, Gu Y G. A short note on quenching phenomena for seilinear parabolic equations[J]. J Differential Equations, 1997,137:240~250.
  • 6Dai Qiuyi. Quenching phenomena for quasilinear parabolic equation[J]. Acta Math Sinica, 1998,41(1):87~96.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部