摘要
考虑含奇异项的退缩抛物型方程的初边值问题,给出了解的局部存在性与惟一性.当区域适当大时,即当所考虑区域上的Laplace算子在Dirichlet边界条件下的第一特征值小于1时,对于奇异项的两种不同情形,分别证明解会在有限时刻发生猝灭现象.
<Abstrcat>A class singular and degenerate parabolic equation is considered. The local existence and uniqueness are proved. Moreover, in two different singular cases the solution will quench in a finite time on an adequate large region on which the first eigenvalue of Laplace operator with Dirichlet boundary conditions is smaller than 1.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
2005年第2期154-156,共3页
Journal of Central China Normal University:Natural Sciences
基金
国家民委重点科研基金资助项目(MZY02014).
关键词
奇异项
退缩抛物型方程
局部解
猝灭现象
singular
degenerate parabolic equation
local solution
quench