期刊文献+

一类非线性抛物泛函微分方程的强迫振动性(英文)

Forced Oscillation of a Class of Nonlinear Parabolic Function Differential Eqation
下载PDF
导出
摘要 考虑一类非线性抛物泛函微分方程的强迫振动性,利用平均值法和格林公式,在两类边值条件下得到这类方程的振动性定理。 In this paper, the forced oscillation of a class of nonlinear parabolic function differential equation is investigated.By use of the average value way and Green formula,oscillation theorems for such equation satisfying two kinds of boundary value conditions is obtained.
作者 邓立虎
出处 《东莞理工学院学报》 2005年第3期1-6,共6页 Journal of Dongguan University of Technology
关键词 泛函微分方程 强迫振动性 非线性 抛物 振动性定理 格林公式 平均值法 边值条件 Oscillation nonlinearity parabolic functional equation
  • 相关文献

参考文献7

  • 1Bykov V, Kultaev T Ch. Oscillation of solutions of a ciass of parabolic equations[J]. Izv.Akad. Nauk. Kirgiz. SSR. 1983,(6):3-9.
  • 2Yoshida N. 0scillation of nonlinear parbolic equations with functional arguments[J]. Hiroshima Math. J., 1986, (16):305-314.
  • 3Yoshida N. Forced oscillation of solutions of parabollic equations[J],Bull.Austral. Math. Soc., 1987, (36):289-294.
  • 4Cui B T. Oscillatins theorems of nonliear parabolic equations of neutral type[J]. Math .J. Toyama Unuv. 1991, (14) : 113-123
  • 5Fu X L ,Zhang L Q. Forced oscilltion for certain nonlinear delay parabolic equations[J]. J, Partial Diff.Eqs. 1995, (8):82-88.
  • 6Lin S Z, Yu Y H. On the oscillations solutions of parabolic differential equations of neutral type[J]. Demonstratio Mathematica , 1996, (3) :603-614.
  • 7Vladimirov V S. Equations of Mathematical Physics, Naulka, Moscow, 1981.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部