期刊文献+

基于PCA余像空间的ICA混合特征人脸识别方法 被引量:2

Face recognition based on mixed feature of ICA in PCA residual face space
下载PDF
导出
摘要 为改善传统的基于特征脸的人脸识别方法在识别光照变化较大的人脸时效果不尽理想的缺陷,提出一种基于“PCA余像空间”的ICA混合特征人脸识别方法。不同于2阶PCA人脸识别方法,用独立元分析法代替主元分析法,对“PCA余像特征脸集”进行独立元特征抽取得到人脸图像基于PCA余像空间的独立元特征,并综合人脸图像的原始独立元特征得到混合特征作为最终识别的特征。实验表明,基于PCA余像空间的ICA混合特征人脸识别方法,在识别光照、表情等外界因素变化较大的人脸图像时,要优于传统的基于特征脸的识别方法、基于ICA的识别方法以及基于2阶PCA的人脸识别方法,并具有较强的适用性。 To improve the effect of traditional eigenface method on face recognition under large illumination variation, a new face recognition method was proposed. Unlike second -order PCA face recognition, it used independent component analysis on the PCA residual eigenfaces instead of principal component analysis to extract the independent component feature, and integrated the IC feature in PCA residual face space with the IC feature in original face space to be the ultimate feature for recognition. Experiments prove that it is more efficient than some conventional human face recognition methods, such as eigenface based method, ICA based method, and second-order PCA method, under large illumination and pose variations, and also has a good practicability.
作者 武妍 宋金晶
出处 《计算机应用》 CSCD 北大核心 2005年第7期1608-1610,1631,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60135010)
关键词 人脸识别 特征脸 PCA余像空间 独立元分析 混合特征 face recognition eigenface PCA residual face space independent component analysis(ICA) mixed feature
  • 相关文献

参考文献15

  • 1MASE K. Recognition of Facial Expression from Optical Flow [J].IEICE Transactions, 1991, E74(10) : 3474 -3483.
  • 2TURK M, PENTLAND A.Eigenfaces for recognition [J]. Journal of Cognitive Neuro-Science, 1991,3(1):71 - 86.
  • 3BARTLETT MS, MOVELLAN JR, SEJNOWSKI TJ. Face Recognition by ICA [J]. IEEE Transactions on Neural Networks, 2002, 13(6) : 1450 - 1463.
  • 4YUEN PC, LAI JH. Face representation using independent component analysis [J]. Pattern Recognition, 2002, 35(6): 1247 - 1257.
  • 5杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 6LIU C J, WECHSLER H. Independent Component Analysis of Gabor Features for Face Recognition [J]. IEEE Transactions on Neural Networks,2003,14(4):919 -928.
  • 7DONATO G , BARTLETT MS . Classifying Facial Actions [J] .IEEE Transactions on Patern Recognition and Machine Learning,1999, 21(10) : 974 -989.
  • 8WANG L, TAN TK. Experimental results of face feature description based on the 2^nd-order eigenface method [R].ISO/IEC/JTCI/SC21/WG11/M6001, Geneva, 2000.
  • 9GIROLAMI M. Advances in Independent Component Analysis [M].Germany: Springer-Verlag, 2000.
  • 10HYVARINEN A. Fast and Robust Fixed-Point Algorithm for Independent Component Analysis [J].IEEE Transactions on Neural Networks, 1999, 10(3):626 - 634.

二级参考文献3

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..

共引文献147

同被引文献19

  • 1柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 2Turk M A,Pentland A P.Face Recognition Using Eigenfaces[C].Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1991:586-591.
  • 3Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:Recognition Using Class Specific Linear Projection[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 4Aleix M.Martinez,Avinash C Kak.PCA and LDA[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2001,23(2):228-233.
  • 5Jian Yang,David Zhang,Alejandro F Frangi,et al.Two-dimensional PCA:A new approach to appearance-based face representation and recognition[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(1):131-137.
  • 6Etend K,Chellappa R.Discriminant Analysis for Recognition of Human Face Images[J].In Journal of Optical Society of America A,1997,14(8):1724-1733.
  • 7Chengjun Liu,Harry Wechsler.Enhanced Fisher Linear Discriminant Models for Face Recognition[C].Proceedings of International Conference Pattern Recognition,Austria:Brisbane,1998,2:1368-1372.
  • 8Shan Du, Rabab K Ward. Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions [ J ]. IEEE Transactions on Circuits and System for Video Technology, 2010, 20 (9) : 1165-1175.
  • 9Lin Chih-jen. Face Database [DB/OL]. http://cvc. yale. edu/projects/yalefaces/yalefaces. html, 1997-09-10.
  • 10AT&T Laboratories Cambridge. ORL Database of Faces [DB/OL]. http://www. cl. cam. ac. uk/research/dtg/at- tarchive/facedatabase. html, 2002-04-15.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部