摘要
回归型支持向量机方法SVR具有很好的学习性能。本文结合两个物理实验提出了利用SVR方法对实验数据进行曲线拟合,并与最小二乘法的方法进行了比较。实验表明其在精度上优于最小二乘法的方法,在对复杂曲线拟合时效果尤为明显。
Support Vector Machine for regression (SVR) has shown very good learning performance. By using the SVR, this article presents a method to curvefit the experiment data in two physics experiments. The experiments show that the proposed SVR-based method is better than the least square algorithms based method in accuracy, especially for complex curvefitting.
出处
《安庆师范学院学报(自然科学版)》
2005年第2期64-66,88,共4页
Journal of Anqing Teachers College(Natural Science Edition)
关键词
支持向量机
曲线拟合
物理实验
support vector machine
curvefitting
physics experiment