期刊文献+

支持向量机在物理实验中的应用 被引量:2

Applications of Support Vector Machine in Physics Experiment
下载PDF
导出
摘要 回归型支持向量机方法SVR具有很好的学习性能。本文结合两个物理实验提出了利用SVR方法对实验数据进行曲线拟合,并与最小二乘法的方法进行了比较。实验表明其在精度上优于最小二乘法的方法,在对复杂曲线拟合时效果尤为明显。 Support Vector Machine for regression (SVR) has shown very good learning performance. By using the SVR, this article presents a method to curvefit the experiment data in two physics experiments. The experiments show that the proposed SVR-based method is better than the least square algorithms based method in accuracy, especially for complex curvefitting.
出处 《安庆师范学院学报(自然科学版)》 2005年第2期64-66,88,共4页 Journal of Anqing Teachers College(Natural Science Edition)
关键词 支持向量机 曲线拟合 物理实验 support vector machine curvefitting physics experiment
  • 相关文献

参考文献6

二级参考文献32

  • 1周恕义,邬敏贤,金国藩.采用图象处理技术的高精度干涉计量系统[J].仪器仪表学报,1993,14(1):81-84. 被引量:9
  • 2吴晓波,钟先信,刘厚权,张启明.应用多项式插值函数提高面阵CCD尺寸测量的分辨力[J].仪器仪表学报,1996,17(2):154-159. 被引量:52
  • 3孟尔熹 曹尔第.实验误差与数据处理[M].上海科学技术出版社,1981..
  • 4Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 5Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 6Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.
  • 7Lin C-F, Wang S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2): 464-471.
  • 8Tay F E H, Cao L J. Modified support vector machines in financial time series forecasting[J]. Neurocomputing, 2002, 48: 847-861.
  • 9Tay F E H, Cao L J. ε-Descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 10Keoman V, Hadzic I. Support vectors selection by linear programming[A]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks[J. Como, Italy, 2000, 5: 193-198.

共引文献157

同被引文献11

  • 1武美先,张学良,温淑花,李海楠.BP神经网络及其改进[J].太原科技大学学报,2005,26(2):120-125. 被引量:37
  • 2潘星,杨汝月.关于泛化神经网络与支持向量机的研究[J].安庆师范学院学报(自然科学版),2007,13(1):32-36. 被引量:2
  • 3Vapnik VN. The Nature of Statistical Learning Theory [M]. New York: Springer, 1995.
  • 4Scholkopf S B. A Tutorial on Support Vector Regression. Technical Report [ R ]. London: Royal Holloway College, 1998.
  • 5Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing. 2002,48(1) :85-105.
  • 6Blake C L, Merz C J. UCI Repository of machine learning datahases[EB/OL]. http://www. ics. uci. edu/-relearn/ MLRepository. html, 2005.
  • 7Vapnik V N. Statistical learning theory[ M ]. New York, 1998.
  • 8陈希孺 王松桂.近代回归分析[M].合肥:安徽教育出版社,1987..
  • 9阎辉,张学工,李衍达.支持向量机与最小二乘法的关系研究[J].清华大学学报(自然科学版),2001,41(9):77-80. 被引量:60
  • 10杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003,15(11):1580-1585. 被引量:140

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部