期刊文献+

微小种植体正畸支抗生物力学的三维有限元分析 被引量:33

A three-dimensional finite element analysis for the biomechanical characteristics of orthodontic anchorage micro-implant
下载PDF
导出
摘要 目的:建立微小种植体正畸支抗的三维有限元模型,分析以不同倾斜角度植入微小种植体时,种植体-骨界面的生物力学变化,为微小种植体正畸支抗系统的设计和临床应用提供理论依据。方法:利用ANSYS6.1大型通用有限元分析软件,建立倾斜角度分别为30°、40°、50°、60°、70°、80°、90°的7个微小支抗种植体模型。分析在200g水平力作用下,种植体-骨界面应力及位移的分布情况。结果:随种植体倾斜角度的增大,种植体颈部的Von-Mises应力值峰值分别为1.0792、1.0104、0.8848、0.8181、0.7583、0.6339及0.5608MPa。位移峰值分别为5.5513、4.9900、3.7419、3.1264、2.5874、1.3624及0.8027μm。结论:微小种植体可在任何倾斜角度上承载200g的水平向正畸力。增加种植体的倾斜角度,可以提高其承载水平向正畸力的能力,提示临床应选择垂直于颊侧牙槽骨的方向植入微小支抗种植体。 PURPOSE:To establish a three-dimensional finite element model for orthodontic anchorage micro-implant,and to analyze the influence of different titled angles on the biomechanical characteristics of orthodontic anchorage implant-bone interface. METHODS: ANSYS( Analysis System)finite element analysis software was used to perform the finite element modeling of the micro-implant with 7 different tilted angles, including 30°, 40°, 50°, 60°, 70°, 80° and 90°. A simulated orthodontic force ,which was 200 grams ,was loaded mesiodistally to the mathematical models.The stress and displacement distribution on the implant-bone interface were analyzed. RESULTS: As the titled angle increased , the Von-Mises stress at the cervix of the implants were 1.0792, 1.0104, 0.8848, 0.8181, 0.7583, 0.6339 and 0.5608MPa ,while the displacement were 5.5513, 4.9900, 3.7419, 3.1264, 2.5874, 1.3624 and 0.8027μm?CONCLUSION: The micro-implant can be safely loaded with 200 grams of mesiodistal orthodontic force .The increase of the titled angle can efficaciously enhance the ability,implicating that the implant can bear a mesiodistal orthodontic force,vertical angle should be chosen when the micro-implant is embedded. Supported by Natural Science Foundation of Liaoning Province (20042076).
出处 《上海口腔医学》 CAS CSCD 2005年第3期281-283,共3页 Shanghai Journal of Stomatology
基金 辽宁省自然科学基金(20042076)
关键词 微小种植体 有限元法 应力分析 生物力学 Micro-implant Finite element analysis Stress analysis Biomechanics
  • 相关文献

参考文献7

二级参考文献37

  • 1陈凤山,杨陆一,梁傥.矫治力作用于不同高度牙槽骨其牙周组织的应力分析[J].中华口腔正畸学杂志,1999,15(3):106-108. 被引量:23
  • 2杨辉,刘洪臣,黄旭明,荣起国,方竞.不同方向颏兜力作用下颞下颌关节受力的三维有限元分析[J].中华口腔正畸学杂志,1999,15(4):147-149. 被引量:8
  • 3中岛功.日本人下颌骨の齿牙欠如域における内部构造に关する研究[J].齿科学报,1991,91(4):419-448.
  • 4[1]Qian H, Chen J, Katona TR. The influence of PDL principal fibers in a 3-dimensional analysis of orthodontic tooth movement. Am J Orthod Dentofacial Orthop, 2001, 120: 272-278.
  • 5[2]Jones ML, Hickman J, Middleton J , et al. A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod, 2001; 28:29-38.
  • 6[3]Stephanie R, Jack E, Alfred A, et al. Nonlinear stress-strain behavior of periodontal ligament under orthodontic loading. Am J Orthod Dentofacial Orthop, 2002, 122:174-179.
  • 7[5]Geramy A. Initial stress produced in the periodontal membrane by orthodontic loads in the presence of varying loss of alveolar bone: a three-dimensional finite element analysis. Eur J Orthod, 2002, 24:21-33.
  • 8[6]Bobak V, Christiansen RL, Hollister SJ, et al. Stress-related molar responses to the transpalatal arch: a finite element analysis. Am J Orthod Dentofacical Orthop, 1997, 112: 512-518.
  • 9[10]Motoyoshi M, Hirabayashi M, Shimazaki T, et al. An experimental study on mandibular expansion: increases in arch width and perimeter. Eur J Orthod, 2002, 24:125-130.
  • 10[11]Iseri H, Tekkaya AE, Oztan O, et al. Biomechanical effects of rapid maxillary expansion on the craniofacial skeleton studied by the finite element method. Eur J Orthod, 1998,20:347-356.

共引文献111

同被引文献354

引证文献33

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部