期刊文献+

混沌系统最大Lyapunov指数估计新方法研究 被引量:7

Study on a New Estimation Method of the Largest Lyapunov Exponent of Chaotic Systems
下载PDF
导出
摘要 Lyapunov指数是定量描述混沌系统的重要指标。本文提出一种基于混沌同步的最大Lya punov指数估计方法,通过构造反馈控制耦合混沌同步系统,应用混沌同步条件,估计原系统最大Lyapunov指数即为满足两耦合系统达到同步的最小控制增益。以Lorenz混沌和静摩擦Duffing振子为仿真对象,仿真结果验证了方法的有效性。 <Abstrcat>The Lyapunov exponent is an important index for chaotic systems. In this paper a method is proposed to estimate the largest Lyapunov exponent based on properties of chaos synchronization. Through constructing feedback controlled coupling chaos synchronization systems and applying synchronization condition, the results show that the minimum control gains to synchronize coupling chaotic systems is the estimation of the largest Lyapunov exponent. Proposed method is applied to Lorenz chaos and dry friction Duffing chaos and numerical simulations demonstrate the validity.
出处 《计算技术与自动化》 2005年第2期31-32,80,共3页 Computing Technology and Automation
关键词 最大LYAPUNOV指数 混沌同步 混沌控制 the largest Lyapunov exponent chaos synchronization chaos control
  • 相关文献

参考文献7

  • 1T S Parker, L O Chua. Practical Numerical Algorithms for Chaotic Systems[M]. New York: Springer Verlag World Publishing Corp, 1992.
  • 2A Wolf. Determining Lyapunov exponent from a timeseries[J].Physica D, 1985, 16: 285~317.
  • 3马军海,陈予恕,刘曾荣.动力系统实测数据的非线性混沌模型重构[J].应用数学和力学,1999,20(11):1128-1134. 被引量:32
  • 4P Grassberger and I Procaccia. Measuring the strangeness of strange attractors[ J ]. Physica D, 1983,9:189~ 208.
  • 5廖晓昕,陈关荣.混沌同步的一些新结果(英文)[J].控制理论与应用,2003,20(2):253-257. 被引量:9
  • 6E N Lorenz. Deterministic Non - periodic Flow [ J ]. J Atomas Sci, 1963,20:130~ 141.
  • 7K Popp. P Stelter. Non- linear Dynamics in Engineering systems[M]. New York: Springer Verlag World Publishing Corp,1990.

二级参考文献22

  • 1[1]PECORA L M, CARROLL T L. Driving systems with chaotic signals [J]. Phys Rev A,1991,44(4):2374-2383.
  • 2[2]CUOMO K M, OPPENHEIM A V. Circuit implementation of synchronized chaos with applications to communication [J]. Phys Rev Lett, 1993,71(1):65-68.
  • 3[3]CHEN G, DONG X. From Chaos to Order: Methodologies, Perspectives and Applications [M]. Singapore: World Scientific Pub Co,1998.
  • 4[4]CURRAN P F, CHUA L O. Absolute stability theory and the synchronization problem [J]. Int J of Bifur Chaos, 1997,7(6):1375-1383.
  • 5[5]BROWN R, KOCAREV L. A unified definition of synchronization for dynamical systems [J]. Chaos,2000,10(2):344-349
  • 6[6]XIE Q, CHEN G. Synchronization stability analysis of the chaotic Rsller system [J]. Int J of Bifur Chaos,1996,6(11):2153-2161
  • 7[7]SUYKENS J A K, CURRAN P F, CHUA L O. Robust synthesis for master-slave synchronization of Lur'e systems [J]. IEEE Trans on Circuits and Systems,1999,46(7):841-850.
  • 8[8]SUYKENS J A K, CURRAN P F, CHUA L O. Master-slave synchronization using dynamic output feedback [J]. Int J of Bifur Chaos, 1997,7(3):671-679.
  • 9[9]LIAO X X, CHEN G, WANG H O. On global synchronization of chaotic systems [J]. Dynamics of Continuous, Discrete and Impulsive Systems, accepted,2002.
  • 10[10]LIAO X X, CHEN G R. Chaos synchronization of general Lur'e systems via time-delay feedback control [J]. Int J of Bifur Chaos,2003,13(1):207-213.

共引文献39

同被引文献44

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部