期刊文献+

EST-based Analysis of Gene Expression in the Porcine Brain 被引量:1

EST-based Analysis of Gene Expression in the Porcine Brain
原文传递
导出
摘要 Since pig is an important livestock species worldwide, its gene expressionhas been investigated intensively, but rarely in brain. In order to study gene expression profilesin the pig central nervous system, we sequenced and analyzed 43,122 high-quality 5'' end expressedsequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries,involving several different prenatal and postnatal developmental stages. The initial ESTs wereassembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Ofthese sequences, 30.6% clusters matched protein databases and represented function known sequences;75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3%matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used thecategories defined by the Gene Ontology to survey gene expression in the porcine brain. Since pig is an important livestock species worldwide, its gene expressionhas been investigated intensively, but rarely in brain. In order to study gene expression profilesin the pig central nervous system, we sequenced and analyzed 43,122 high-quality 5'' end expressedsequence tags (ESTs) from porcine cerebellum, cortex cerebrum, and brain stem cDNA libraries,involving several different prenatal and postnatal developmental stages. The initial ESTs wereassembled into 16,101 clusters and compared to protein and nucleic acid databases in GenBank. Ofthese sequences, 30.6% clusters matched protein databases and represented function known sequences;75.1% had significant hits to nucleic acid databases and partial represented known function; 73.3%matched known porcine ESTs; and 21.5% had no matches to any known sequences in GenBank. We used thecategories defined by the Gene Ontology to survey gene expression in the porcine brain.
出处 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2004年第4期237-244,共8页 基因组蛋白质组与生物信息学报(英文版)
基金 This work was supported by the National High-Tech Research and Development Program of China (No.2002AA229061)the Major Knowledge Innovation Programs of the Chinese Academy of Sciences (No.KSCX1-01).
关键词 PIG BRAIN expressed sequence tags gene identification pig brain expressed sequence tags gene identification
  • 相关文献

参考文献1

二级参考文献39

  • 1Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J Mol Biol, 1997, 268(1): 78~94
  • 2Salamov, A. A. & Solovyev, V. V. Ab initio gene finding in Drosophila genomic DNA. Genome Res, 2000, 10(4): 516-522
  • 3Consortium., G. O. Creating the gene ontology resource: design and implementation. Genome Res, 2001, 11 (8): 1425~ 1433
  • 4Tennyson, C. N., Klamut, H. J. & Worton, R. G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat Genet, 1995, 9(2): 184~190
  • 5Lukashin, A. V. & Borodovsky, M. GeneMark. hmm: new solutions for gene finding. Nucleic Acids Res, 1998, 26(4): 1107-1115
  • 6Heilig, R. et al. The DNA sequence and analysis of human chromosome 14. Nature, 2003, 421(6923): 601-607
  • 7Rogic, S., Mackworth, A. K. & Ouellette, F. B. Evaluation of gene-finding programs on mammalian sequences. Genome Res,2001, 11(5): 817~832
  • 8Burset, M. & Guigo, R. Evaluation of gene structure prediction programs. Genomics, 1996, 34(3): 353~367
  • 9Ashbumer, M. A biologist's view of the Drosophila genome annotation assessment project. Genome Res, 2000, 10(4): 391~393
  • 10Claverie, J. M. Do we need a huge new centre to annotate the human genome? Nature, 2000, 403(6765): 12

同被引文献22

  • 1杨郁文,倪万潮,张保龙,沈新莲,张香桂,徐英俊,姚姝.陆地棉一个丝氨酸/苏氨酸激酶蛋白基因的克隆与表达分析[J].棉花学报,2006,18(3):140-144. 被引量:13
  • 2陶大勇.盐穗木研究进展[J].安徽农业科学,2007,35(20):6083-6084. 被引量:23
  • 3ZHU Jiankang. Plant salt tolerance [ J ]. Trends in plant science , 2001, 6(2): 66-71.
  • 4ZHU Jiankang, HANS J B. Plant cellular and molecularresponses to high salinity [ J ]. Annu Rev Plant Physiol , 2000, 51(10) : 463-499.
  • 5QIU Qiang, MA Tao, HU Quanjun,et al. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica[ J ]. Tree physiology , 2011, 31 (4) : 452- 461.
  • 6WU Huajun, ZHANG Zhonghui, WANG Junyi, et al. In- sights into salt tolerance from the genome of Thellungiella salsuginea[ J ]. Proceedings of the National Academy of the Sciences of the United States of America (PNAS) , 2012, 109(30) : 12219-12224.
  • 7GE Y, LI Y, ZHU Y, et al. Global transeriptome profiling of wild soybean (Glycine soja ) roots under NaHC03 treatment[J]. BMC Plant Biology , 2010, 10 : 153-167.
  • 8AGALOU A, PURWANTOMO S, OVERNAS E,et al.A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members [ J ]. Plant molecular biology , 2008, 66(1-2) : 87-103.
  • 9LIBAULT M, WAN J, CZECHOWSKI T, et al. Identifi- cation of 118 Arabidopsis transcription factor and 30 ubiq- uitin-ligase genes responding to chitin, a plant-defense elicitor[ J ]. Molecular plant-microbe interactions : MPMI, 2007, 20(8) : 900-911.
  • 10RUSlqTON P, SOMSSICH I, RINGLER P, et al. WRKY transcription factors[ J]. Trends in Plant Science , 2012, 15(5) : 247-258.

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部