摘要
Feature selection is a process where a minimal feature subset is selected from an original feature set according to a certain measure. In this paper, feature relevancy is defined by an inconsistency rate. A bidirectional automated branch and bound algorithm is presented. It is a new complete search algorithm for feature selection, which performs feature deletion and feature addition in parallel. Its bound is determined by inconsistency rate of the original feature set, hence termed as ‘automated’. Experimental study shows that it is fit for feature selection.
Feature selection is a process where a minimal feature subset is selected from an original feature set according to a certain measure. In this paper, feature relevancy is defined by an inconsistency rate. A bidirectional automated branch and bound algorithm is presented. It is a new complete search algorithm for feature selection, which performs feature deletion and feature addition in parallel. Its bound is determined by inconsistency rate of the original feature set, hence termed as ‘automated’. Experimental study shows that it is fit for feature selection.
基金
theNationalNatureScienceFoundationofChina(GrantNo.60075007)